【題目】如圖,在平面直角坐標(biāo)系中,直線l1y=﹣x與反比例函數(shù)y的圖象交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的橫坐標(biāo)是-4

1)求反比例函數(shù)的表達(dá)式;

2)根據(jù)圖象直接寫出﹣x的解集;

3)將直線l1yx沿y向上平移后的直線l2與反比例函數(shù)y在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為20,求平移后的直線l2的函數(shù)表達(dá)式.

【答案】12x>4或-4x03y=﹣x+5

【解析】

1)由正比例函數(shù)解析式確定A-4,2),然后把A點(diǎn)坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;
2)通過解方程組B4,-2),然后利用函數(shù)圖象寫出反比例函數(shù)圖象在一次函數(shù)y=-x上方所對(duì)應(yīng)的自變量的范圍,從而得到-x的解集;
3)設(shè)直線l2x軸于D,連接AD、BD,如圖,利用三角形面積公式得SADB=SACB=20,則×OD×2+×OD×2=30,求出OD得到D100),利用兩直線平行可設(shè)直線l2的解析式為y=-x+b,然后把D點(diǎn)坐標(biāo)代入求出b得到直線l2的解析式為y=-x+5

解:(1)∵直線l1y=﹣x經(jīng)過點(diǎn)A,A點(diǎn)的橫坐標(biāo)是-4

∴當(dāng)x=﹣4時(shí),y2,

A(﹣4,2),

∵反比例函數(shù)y的圖象經(jīng)過點(diǎn)A

k=﹣4×2=﹣8,

∴反比例函數(shù)的表達(dá)式為y=﹣;

2)解方程組

B4,﹣2),

∴不等式﹣x的解集為xspan>>4或-4x0;

3)如圖,設(shè)平移后的直線l2x軸交于點(diǎn)D,連接ADBD,

CDAB,

∴△ABC的面積與△ABD的面積相等,

∵△ABC的面積為20,

SAOD+SBOD20,即OD(|yA|+|yB|)=20,

×OD×420

OD10,

D10,0),

設(shè)平移后的直線l2的函數(shù)表達(dá)式為y=﹣x+b,

D10,0)代入,可得0=﹣×10+b

解得b5,

∴平移后的直線l2的函數(shù)表達(dá)式為y=﹣x+5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)行垃圾資源化利用,是社會(huì)文明水平的一個(gè)重要體現(xiàn).某環(huán)保公司研發(fā)的甲、乙兩種智能設(shè)備可利用最新技術(shù)將干垃圾變身為燃料棒.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備,若干已知購買甲型智能設(shè)備花費(fèi)360萬元,購買乙型智能設(shè)備花費(fèi)480萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價(jià)和為140萬元.

1)求甲乙兩種智能設(shè)備單價(jià);

2)垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的40%,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多10元,調(diào)查發(fā)現(xiàn):若燃料棒售價(jià)為每噸200元,平均每天可售出350噸,而當(dāng)銷售價(jià)每降低1元,平均每天可多售出5噸,但售價(jià)在每噸200元基礎(chǔ)上降價(jià)幅度不超過7%,

①垃圾處理廠想使這種燃料棒的銷售利潤平均每天達(dá)到36080元,求每噸燃料棒售價(jià)應(yīng)為多少元?

②每噸燃料棒售價(jià)應(yīng)為多少元時(shí),這種燃料棒平均每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校想知道九年級(jí)學(xué)生對(duì)我國倡導(dǎo)的一帶一路的了解程度,隨機(jī)抽取部分九年級(jí)學(xué)生進(jìn)行問卷調(diào)查,問卷設(shè)有4個(gè)選項(xiàng)(每位被調(diào)查的學(xué)生必選且只選一項(xiàng)):A.非常了解.B.了解.C.知道一點(diǎn).D.完全不知道.將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息,解答下列問題:

1)求本次共調(diào)查了多少學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)了解的學(xué)生約有多少名?

4)在非常了解3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請(qǐng)用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校全體學(xué)生積極參加校團(tuán)委組織的獻(xiàn)愛心捐款活動(dòng),為了解捐款情況,隨機(jī)抽取了部分學(xué)生并對(duì)他們的捐款情況作了統(tǒng)計(jì),繪制了兩幅不完整的統(tǒng)計(jì)圖(統(tǒng)計(jì)圖中每組含最小值,不含最大值).請(qǐng)依據(jù)圖中信息解答下列問題:

1)求隨機(jī)抽取的學(xué)生人數(shù);

2)填空:(直接填答案)

“20元~25部分對(duì)應(yīng)的圓心角度數(shù)為______

②捐款的中位數(shù)落在______(填金額范圍);

3)若該校共有學(xué)生3500人,請(qǐng)估算全校捐款不少于20元的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca0)圖象的一部分,對(duì)稱軸x,且經(jīng)過點(diǎn)(2,0),下列說法:①abc0;②a+b0;③4a+2b+c0;④若(﹣,y1),(,y2)是拋物線上的兩點(diǎn),則y1y2,其中說法正確的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人民生活水平的提高和環(huán)境的不斷改善,帶動(dòng)了旅游業(yè)的發(fā)展.某市旅游景區(qū)有A,B,C,D四個(gè)著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2019年游客去各景點(diǎn)情況統(tǒng)計(jì)圖,根據(jù)給出的信息解答下列問題:

12019年該市旅游景區(qū)共接待游客   萬人,扇形統(tǒng)計(jì)圖中C景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是   度;

2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)甲,乙兩位同學(xué)去該景區(qū)旅游,用樹狀圖或列表法,求甲,乙兩位同學(xué)在AB,D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把方程(x- m)2+(y-n)2=r2稱為圓心為(m,n)、半徑長為r的圓的標(biāo)準(zhǔn)方程.例如,圓心為(1,-2)、半徑長為3的圓的標(biāo)準(zhǔn)方程是(x- 1)2+(y+2)2=9.在平面直角坐標(biāo)系中,C與軸交于點(diǎn)AB.且點(diǎn)B的坐標(biāo)為(80),y軸相切于點(diǎn)D(0, 4),過點(diǎn)A,B,D的拋物線的頂點(diǎn)為E

(1)求圓C的標(biāo)準(zhǔn)方程;

(2)試判斷直線AE與圓C的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線x軸,y軸的正半軸分別交于點(diǎn)和點(diǎn),與x軸負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)M從點(diǎn)A出發(fā)沿折線向終點(diǎn)B勻速運(yùn)動(dòng),將線段繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到線段,連接.

1)求拋物線的函數(shù)表達(dá)式;

2)如圖2,當(dāng)點(diǎn)N在線段上時(shí),求證:;

3)當(dāng)點(diǎn)N在線段上時(shí),直接寫出此時(shí)直線與拋物線交點(diǎn)的縱坐標(biāo);

4)設(shè)的長度為n,直接寫出在點(diǎn)M移動(dòng)的過程中,的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案