【題目】(1)觀察猜想
如圖(1),在△ABC中,∠BAC=90°,AB=AC,點D是BC的中點.以點D為頂點作正方形DEFG,使點A,C分別在DG和DE上,連接AE,BG,則線段BG和AE的數(shù)量關(guān)系是_____;
(2)拓展探究
將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,小于或等于360°),如圖2,則(1)中的結(jié)論是否仍然成立?如果成立,請予以證明;如果不成立,請說明理由.
(3)解決問題
若BC=DE=2,在(2)的旋轉(zhuǎn)過程中,當(dāng)AE為最大值時,直接寫出AF的值.
【答案】(1)BG=AE.
(2)成立.
如圖②,
連接AD.∵△ABC是等腰三直角角形,∠BAC=90°,點D是BC的中點.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故當(dāng)BG最大時,AE也最大.
正方形DEFG繞點D逆時針方向旋轉(zhuǎn)270°時,BG最大,如圖③.
若BC=DE=2,則AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如圖②,連接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,點D是BC的中點.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故當(dāng)BG最大時,AE也最大.Z+X+X+K]
因為正方形DEFG在繞點D旋轉(zhuǎn)的過程中,G點運動的圖形是以點D為圓心,DG為半徑的圓,故當(dāng)正方形DEFG旋轉(zhuǎn)到G點位于BC的延長線上(即正方形DEFG繞點D逆時針方向旋轉(zhuǎn)270°)時,BG最大,如圖③.
若BC=DE=2,則AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋轉(zhuǎn)過程中,當(dāng)AE為最大值時,AF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B20A21B21的頂點A21的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(2,0)、B(3,1)、C(1,3).
(1)畫出△ABC沿x軸負(fù)方向平移2個單位后得到的△A1B1C1,并寫出B1的坐標(biāo) ;
(2)以A1點為旋轉(zhuǎn)中心,將△A1B1C1逆時針方向旋轉(zhuǎn)90°得△A1B2C2,畫出△A1B2C2,并寫出C2的坐標(biāo) ;
(3)直接寫出過B、B1、C2三點的圓的圓心坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為15cm,現(xiàn)有兩點M,N分別從點A,點B同時出發(fā),沿三角形的邊順時針運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當(dāng)點N第一次到達(dá)B點時,M,N同時停止運動
(1)點M、N運動幾秒后,M,N兩點重合?
(2)點M、N運動幾秒后,△AMN為等邊三角形?
(3)當(dāng)點M,N在BC邊上運動時,能否得到以MN為底邊的等腰三角形AMN?如存在,請求出此時M,N運動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點都在格點上,點A的坐標(biāo)為(2,2)請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出A1的坐標(biāo).
(2)畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后得到的△A2B2C2,并寫出A2的坐標(biāo).
(3)畫出△A2B2C2關(guān)于原點O成中心對稱的△A3B3C3,并寫出A3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點O是坐標(biāo)原點,一次函數(shù)y1=﹣x+4與反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點.
(1)求k、m、n的值.
(2)根據(jù)圖象寫出當(dāng)y1>y2時,x的取值范圍.
(3)若一次函數(shù)圖象與x軸、y軸分別交于點N、M,則求出△AON的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;③命題“菱形的四條邊都相等”的逆命題是四條邊相等的四邊形是菱形.④△ABC中,若 a:b:c=1:2:,則這個三角形是直角三角形.其中,正確命題的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是ts.過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com