【題目】如圖,在平面直角坐標中,點O是坐標原點,一次函數(shù)y1=﹣x+4與反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點.
(1)求k、m、n的值.
(2)根據(jù)圖象寫出當y1>y2時,x的取值范圍.
(3)若一次函數(shù)圖象與x軸、y軸分別交于點N、M,則求出△AON的面積.
【答案】(1)k=3, m=3,n=3,;(2)1<x<3;(3)6
【解析】
(1)把A(1,m)、B(n,1)兩點的坐標代入一次函數(shù)的解析式即可求出m、n的值,再把B的坐標代入反比例函數(shù)的解析式即可求出k的值;
(2)根據(jù)函數(shù)的圖象和A、B的坐標即可得出答案;
(3)先根據(jù)一次函數(shù)的解析式求出N的坐標,再利用三角形面積公式即可求出△AON的面積.
解:(1)把A(1,m)、B(n,1)兩點的坐標代入y1=﹣x+4,
得m=﹣1+4=3,﹣n+4=1,n=3,
則A(1,3)、B(3,1).
把B(3,1)代入y2=,
得k=3×1=3;
(2)∵A(1,3)、B(3,1),
∴由函數(shù)圖象可知,y1>y2時,x的取值范圍是1<x<3;
(3)∵一次函數(shù)y1=﹣x+4的圖象與x軸交于點N,
∴N(4,0),ON=4,
∵A(1,3),
∴△AON的面積=×4×3=6.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列例題的解答過程:解方程:3(x﹣2)2+7(x﹣2)+4=0.
解:設 x﹣2=y,則原方程化為:3y2+7y+4=0.
∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1.
∴y= =.∴y1=﹣1,y2=﹣ .
當 y=﹣1 時,x﹣2=﹣1,∴x=1;
當 y=﹣時,x﹣2=﹣,∴x= .
∴原方程的解為:x1=1,x2=.
(1)請仿照上面的例題解一元二次方程:2(x﹣3)2﹣5(x﹣3)﹣7=0;
(2)若(a2+b2)(a2+b2﹣2)=3,求代數(shù)式 a2+b2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為( 。
A. 8 B. 9 C. 5+ D. 5+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.
(1)b =_________,c =_________,點B的坐標為_____________;(直接填寫結果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察猜想
如圖(1),在△ABC中,∠BAC=90°,AB=AC,點D是BC的中點.以點D為頂點作正方形DEFG,使點A,C分別在DG和DE上,連接AE,BG,則線段BG和AE的數(shù)量關系是_____;
(2)拓展探究
將正方形DEFG繞點D逆時針方向旋轉一定角度后(旋轉角度大于0°,小于或等于360°),如圖2,則(1)中的結論是否仍然成立?如果成立,請予以證明;如果不成立,請說明理由.
(3)解決問題
若BC=DE=2,在(2)的旋轉過程中,當AE為最大值時,直接寫出AF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設點和是反比例函數(shù)圖象上兩點,若,求的值;
(3)若M(x1,y1)和N(x2,y2)兩點在直線AB上,如圖2所示,過M、N兩點分別作y軸的平行線交雙曲線于E、F,已知﹣3<x1<0,x2>1,請?zhí)骄慨?/span>x1、x2滿足什么關系時,MN∥EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 AB 是⊙O 的直徑,點 C、D 在⊙O 上,過 D 點作 PF∥AC交⊙O 于 F,交 AB 于點 E,∠BPF=∠ADC
(1)求證:AEEB=DEEF.
(2)求證:BP 是⊙O 的切線:
(3)當?shù)陌霃綖?/span>,AC=2,BE=1 時,求 BP 的長,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,,為軸正半軸上一點,連接,在第一象限作, ,過點作直線軸于,直線與直線交于點,且,則直線解析式為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AC=BC,點D是BC上一點,∠ADE=∠C.
(1)如圖1,若∠C=90°,∠DBE=135°.
①求證:∠EDB=∠CAD;
②求證:DA=DE;
(2)如圖2,若∠C=40°,DA=DE,求∠DBE的度數(shù);
(3)如圖3,請直接寫出∠DBE與∠C之間滿足什么數(shù)量關系時,總有DA=DE成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com