【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為( ) ①a= ,b= ,c= ;
②a=6,∠A=45°;
③∠A=32°,∠B=58°;
④a=7,b=24,c=25.
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】A
【解析】解:①( 2+( 2≠( 2 , 不能構(gòu)成直角三角形;②a=6,∠A=45°,不一定是直角三角形;③∠A=32°,∠B=58°,則∠C=180°﹣32°﹣58°=90°,是直角三角形;④72+242=252 , 能構(gòu)成直角三角形; 能構(gòu)成直角三角形的個(gè)數(shù)為2個(gè),
故選:A.
根據(jù)勾股定理的逆定理:如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2 , 那么這個(gè)三角形就是直角三角形;三角形內(nèi)角和為180°進(jìn)行分析即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)A(a,0)在x軸的正半軸上,定點(diǎn)B(m, n)在第一象限內(nèi)(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF , 連接FD , 點(diǎn)M為線段FD的中點(diǎn).作BB1x軸于點(diǎn)B1 , 作FF1x軸于點(diǎn)F1.

(1)填空:由△≌△ , 及B(m, n)可得點(diǎn)F的坐標(biāo)為 , 同理可得點(diǎn)D的坐標(biāo)為;(說(shuō)明:點(diǎn)F , 點(diǎn)D的坐標(biāo)用含m , n , a的式子表示)
(2)直接利用(1)的結(jié)論解決下列問(wèn)題:
①當(dāng)點(diǎn)Ax軸的正半軸上指定范圍內(nèi)運(yùn)動(dòng)時(shí),點(diǎn)M總落在一個(gè)函數(shù)圖象上,求該函數(shù)的解析式(不必寫(xiě)出自變量x的取值范圍);
②當(dāng)點(diǎn)Ax軸的正半軸上運(yùn)動(dòng)且滿(mǎn)足2≤a≤8時(shí),求點(diǎn)M所經(jīng)過(guò)的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是線段AB的中點(diǎn),CD平分ACE,CE平分BCD,CD=CE;

(1)求證:ACD≌△BCE;

(2)D=50°,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校初一某班學(xué)生的平均體重是45公斤.

(1)下表給出了該班6位同學(xué)的體重情況(單位:公斤),完成下表

姓 名

小麗

小華

小明

小方

小穎

小寶

體 重

37

50

40

   

36

48

體重與平均體重的差值

﹣8

+5

   

+2

   

   

(2)最重的與最輕的同學(xué)的體重相差多少?

(3)這6位同學(xué)的平均體重是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(
A.當(dāng)AB=BC時(shí),它是菱形
B.當(dāng)AC⊥BD時(shí),它是菱形
C.當(dāng)∠ABC=90°時(shí),它是矩形
D.當(dāng)AC=BD時(shí),它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若2x2+3x+5=7,則4x2+6x+2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將連續(xù)的偶數(shù)2,4,6,8…排列成如下的數(shù)表用十字框框出5個(gè)數(shù)(如圖)

(1)十字框框出5個(gè)數(shù)的和與框子正中間的數(shù)20有什么關(guān)系?

(2)若將十字框上下左右平移,但一定要框住數(shù)列中的5個(gè)數(shù),若設(shè)中間的數(shù)為a,用a的代數(shù)式表示十字框框住的5個(gè)數(shù)字之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)直角三角形的斜邊長(zhǎng)15cm,一條直角邊比另一條直角邊長(zhǎng)3cm.求兩條直角邊的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問(wèn)題:
(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)

(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫(xiě)出證明過(guò)程,若不成立,請(qǐng)說(shuō)明理由;

(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案