【題目】如圖,四邊形ABCD為正方形,O為AC、BD的交點(diǎn),△DCE為Rt△,∠CED=90°,OE=,若CEDE=5,則正方形的面積為( )
A.5B.6C.7D.8
【答案】B
【解析】
過(guò)點(diǎn)O作OM⊥CE于M,作ON⊥DE交ED的延長(zhǎng)線于N,因?yàn)椤?/span>COD=∠CED=90°,可得出O、C、E、D四點(diǎn)共圓,所以∠CEO=∠CDO=45°,已知OE=,可求出ON=NE=2,
可得四邊形OMEN是正方形,∠MON=90°,再求出∠COM=∠DON,根據(jù)正方形的性質(zhì)可得OC=OD;然后利用AAS證明△COM和△DON全等,從而得到CM=DN,所以DE+CE=NE-ND+ME+CM=NE+ME=4,設(shè)DE=a,CE=b,得出a+b=4,已知ab=5,可求得,進(jìn)而求得正方形ABCD的面積.
如圖,過(guò)點(diǎn)O作OM⊥CE于M,作ON⊥DE交ED的延長(zhǎng)線N
∵∠COD=∠CED=90°
∴O、C、E、D四點(diǎn)共圓
∴∠CEO=∠CDO=45°
∴∠DEO=45°
∵OE=
∴
∴ON=NE=2
∴四邊形OMEN是正方形,
∴∠MON=90°
∵∠COM+∠DOM=∠DON+∠DOM,
∴∠COM=∠DON
∵四邊形ABCD是正方形,
∴OC=OD
∵在△COM和△DON中
∴△COM≌△DON,
∴CM=DN,
DE+CE=NE-ND+ME+CM=NE+ME=4
設(shè)DE=a,CE=b
∴a+b=4
∵CEDE=5
∴
∴S正方形ABCD=CD2=6
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形的邊長(zhǎng)為,點(diǎn)為正方形的中心,點(diǎn)為邊上一動(dòng)點(diǎn),直線交于點(diǎn),過(guò)點(diǎn)作,垂足為點(diǎn),連接,則的最小值為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+c經(jīng)過(guò)點(diǎn)A(0,2)和點(diǎn)B(-1,0).
(1)求此拋物線的解析式;
(2)將此拋物線平移,使其頂點(diǎn)坐標(biāo)為(2,1),平移后的拋物線與x軸的兩個(gè)交點(diǎn)分別為點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左邊),求點(diǎn)C,D的坐標(biāo);
(3)將此拋物線平移,設(shè)其頂點(diǎn)的縱坐標(biāo)為m,平移后的拋物線與x軸兩個(gè)交點(diǎn)之間的距離為n,若1<m<3,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店經(jīng)銷(xiāo)甲、乙兩種不同的筆記本,已知:兩種筆記本的進(jìn)價(jià)之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學(xué)買(mǎi)4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進(jìn)價(jià)分別是多少元?
(2)該文具店購(gòu)入這兩種筆記本共60本,花費(fèi)不超過(guò)296元,則購(gòu)買(mǎi)甲種筆記本多少本時(shí)文具店獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在的正三角形的網(wǎng)格中,的三個(gè)頂點(diǎn)都在格點(diǎn)上.請(qǐng)按要求畫(huà)圖和計(jì)算:①僅用無(wú)刻度直尺;②保留作圖痕跡.
(1)在圖1中,畫(huà)出的邊上的中線.
(2)在圖2中,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AB的中點(diǎn),AC<BC.
(1)試用無(wú)刻度的直尺和圓規(guī),在BC上作一點(diǎn)E,使得直線ED平分ABC的周長(zhǎng);(不要求寫(xiě)作法,但要保留作圖痕跡).
(2)在(1)的條件下,若DE分Rt△ABC面積為1﹕2兩部分,請(qǐng)?zhí)骄?/span>AC與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)本校初2017屆500名學(xué)生中中考參加體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測(cè)試成績(jī)整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),根據(jù)統(tǒng)計(jì)圖提供的信息,回答問(wèn)題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖中,成績(jī)?yōu)?/span>10分的所在扇形的圓心角是 度;
(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績(jī)?cè)?/span>8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系,兩點(diǎn)的坐標(biāo)分別為.
(1)若是軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),的周長(zhǎng)最短;
(2)若是軸上的兩個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),四邊形的周長(zhǎng)最短;
(3)設(shè)分別為軸和軸上的動(dòng)點(diǎn),請(qǐng)問(wèn):是否存在這樣的點(diǎn), 使四邊形的周長(zhǎng)最短?若存在,請(qǐng)求出,_________,________(不必寫(xiě)解答過(guò)程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O.
(1)求證:直線BC是⊙O的切線;
(2)若∠ABC=30°,⊙O的直徑為4,求陰影部分面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com