【題目】如圖,在RtABC中,C=90°,點(diǎn)DAB的中點(diǎn),ACBC

(1)試用無(wú)刻度的直尺和圓規(guī),在BC上作一點(diǎn)E,使得直線(xiàn)ED平分ABC的周長(zhǎng);(不要求寫(xiě)作法,但要保留作圖痕跡)

(2)(1)的條件下,若DERtABC面積為12兩部分,請(qǐng)?zhí)骄?/span>ACBC的數(shù)量關(guān)系.

【答案】(1)作圖見(jiàn)解析;(2)BC=3AC

【解析】

1)在BC上用圓規(guī)截取BF=AC,然后再作FC的垂直平分線(xiàn),其與BC的交點(diǎn)即為E點(diǎn),最后連接DE即可.

2)連接DC,由點(diǎn)DAB的中點(diǎn),則SADC=SBCD;設(shè)SADC=SBCD=xSDEC=y,則有(x+y):(x-y=2:1,解得x=3y,即EBC的三等分點(diǎn),即可說(shuō)明BC=3EC;EC=EF=BF=AC,BC=3AC

解:(1)如圖:DE即為所求;

2)連接DC

∵點(diǎn)DAB的中點(diǎn)

SADC=SBCD

設(shè)SADC=SBCD=x,SDEC=y,

SBDC:S四邊形CADE=1:2

∴(SBDC -SDCE):( SADC+SDCE)=1:2,

∴2x-y=x+y,即x=3y

點(diǎn)EBC的三等分點(diǎn), BC=3EC

∵EC=EF=BF=AC

∴BC=3AC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E是對(duì)角線(xiàn)AC上一動(dòng)點(diǎn),連接BE,作CFBE分別交BE于點(diǎn)GAB于點(diǎn)F

1)如圖1,若CF恰好平分∠BCA,求證:△CGE≌△CGB

2)如圖2,若,取BC的中點(diǎn)H,連接AHBE于點(diǎn)P,求證:

AH3AP;

BH2BFBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)O為∠BAC的平分線(xiàn)上一點(diǎn),連接OB、OC

1)求證:OBOC

2)若OAOC,∠BAC46°,求∠OCB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是我校聞瀾閣前樓梯原設(shè)計(jì)稿的側(cè)面圖,,,樓梯的坡比為1,為了增加樓梯的舒適度,將其改造成如圖2,測(cè)量得的中點(diǎn),過(guò)點(diǎn)分別作的角平分線(xiàn)于點(diǎn)于點(diǎn),其中為樓梯,為平地,則平地的長(zhǎng)度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,OAC、BD的交點(diǎn),△DCERt△,∠CED=90°,OE=,若CEDE=5,則正方形的面積為(   )

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù) y的圖象如圖所示,則二次函數(shù) y =ax 22x和一次函數(shù) ybx+a 在同一平面直角坐標(biāo)系中的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為4的正方形,ECD上一點(diǎn),且DE1F為射線(xiàn)BC上一動(dòng)點(diǎn),過(guò)點(diǎn)EEGAF于點(diǎn)P,交直線(xiàn)AB于點(diǎn)G.則下列結(jié)論中:①AFEG;②若∠BAF=∠PCF,則PCPE;③當(dāng)∠CPF45°時(shí),BF1;④PC的最小值為2.其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點(diǎn),連接AC,BC,過(guò)點(diǎn)O作OD⊥AC于點(diǎn)D,過(guò)點(diǎn)A作半圓O的切線(xiàn)交OD的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BD并延長(zhǎng)交AE于點(diǎn)F.

(1)求證:AEBC=ADAB;

(2)若半圓O的直徑為10,sin∠BAC=,求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案