【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1與x軸交于A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,與y軸交于點C,頂點為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個實根,則x1+x2=﹣ ,x1x2= )
(1)求m的取值范圍;
(2)若OA=3OB,求拋物線的解析式;
(3)在(2)中拋物線的對稱軸PD上,存在點Q使得△BQC的周長最短,試求出點Q的坐標.
【答案】(1)m>﹣1;(2)y=﹣x2﹣2x+3;(3)存在點Q(﹣1,2)使得△BQC的周長最短.
【解析】
(1)將拋物線的問題轉化到一元二次方程中,利用一元二次方程根的判別式和根與系數(shù)的關系解決;
(2)先用一元二次方程的兩根表示出OA,OB,再用根與系數(shù)的關系即可;
(3)先由于點A,B關于拋物線的對稱軸PD對稱,連接AC與PD的交點就是使△BQC的周長最短,然后確定出直線AC解析式,最后將拋物線的對稱軸代入直線AC解析式中即可.
(1)令y=0,則有﹣x2﹣2x+m+1=0,
即:x1 , x2是一元二次方程x2+2x﹣(m+1)=0,
∵拋物線y=﹣x2﹣2x+m+1與x軸交于A(x1 , 0)、B(x2 , 0)兩點,
∴x1x2=﹣(m+1),x1+x2=﹣2,
△=4+4(m+1)>0,
∴m>﹣2
∵x1<0,x2>0,
∴x1x2<0,
∴﹣(m+1)<0,
∴m>﹣1,
即m>﹣1
(2)解:∵A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,
∴OA=﹣x1 , OB=x2 ,
∵OA=3OB,
∴﹣x1=3x2 , ①
由(1)知,x1+x2=﹣2,②
x1x2=﹣(m+1),③
聯(lián)立①②③得,x1=﹣3,x2=1,m=2,
∴拋物線的解析式y=﹣x2﹣2x+3
(3)存在點Q,
理由:如圖,
連接AC交PD于Q,點Q就是使得△BQC的周長最短,(∵點A,B關于拋物線的對稱軸PD對稱,)
連接BQ,
由(2)知,拋物線的解析式y=﹣x2﹣2x+3;x1=﹣3,
∴拋物線的對稱軸PD為x=﹣1,C(0,3),A(﹣3,0),
∴用待定系數(shù)法得出,直線AC解析式為y=x+3,
當x=﹣1時,y=2,
∴Q(﹣1,2),
∴點Q(﹣1,2)使得△BQC的周長最短
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ACB=900,AC=BC,直線MN經過點C,且AD⊥MN于D,BE⊥MN于E.
當直線MN繞點C旋轉到圖1的位置時,求證: ≌△CBE;②DE=AD+BE;
當直線MN繞點C旋轉到圖2的位置時,中的結論還成立嗎?若成立,請給出證明;若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校射擊隊從甲、乙、丙、丁四人中選拔一人參加市運動會射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績的平均數(shù)及方差如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)/環(huán) | 9.5 | 9.5 | 9.6 | 9.6 |
方差/環(huán)2 | 5.1 | 4.7 | 4.5 | 5.1 |
請你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點O是AC中點,延長DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)y=﹣+bx+c的圖象經過點A(1,0),且當x=0和x=5時所對應的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用對稱性可設計出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點都在格點上).
(1)先作出該四邊形關于直線成軸對稱的圖形,再作出你所作的圖形連同原四邊形繞0點按順時針方向旋轉90o后的圖形;
(2)完成上述設計后,整個圖案的面積等于_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南水北調中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結果精確到0.1米,參考數(shù)據(jù):sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,平分,平分.
(1)求的度數(shù);
(2)如圖2,過點的直線交射線于點,交射線于點,求證:;
(3)如圖3,過點的直線交射線的反向延長線于點,交射線于點,,,,求的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com