【題目】如圖,直線軸、軸分別相交于.點(diǎn)的坐標(biāo)為,點(diǎn)是線段上的一點(diǎn).

1)求的值;(2)若的面積為2,求點(diǎn)的坐標(biāo).

【答案】1k= 2)(-1

【解析】

(1)將點(diǎn)E的坐標(biāo)代入一次函數(shù)解析式中,即可得出關(guān)于k的一元一次方程,解方程即可得出結(jié)論;

(2)結(jié)合(1)中得k值可得出一次函數(shù)解析式,由點(diǎn)E的坐標(biāo)可得出線段OE的長(zhǎng)度,根據(jù)三角形的面積公式可求出點(diǎn)P的縱坐標(biāo),將點(diǎn)P的縱坐標(biāo)代入一次函數(shù)解析式中即可求出點(diǎn)P的橫坐標(biāo),由此即可得出結(jié)論

(1)將點(diǎn)E(-4,0)代入到y=kx+3,

:0=-4k+3=0,

解得:k=

(2)k=

∴直線EF的解析式為

∵點(diǎn)E的坐標(biāo)為(-4,0),

OE=4

OPE= OP

=1

y=1,,

解得:x=-

故當(dāng)OPB的面積為2時(shí),點(diǎn)P的坐標(biāo)為(-,1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖。請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922393511583744/1923977001213952/STEM/d5900c7cb9b84a9a89aefef7d82bcf93.png]

(1)這次被調(diào)查的總?cè)藬?shù)是多少?

(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)如果騎自行車(chē)的平均速度為12km/h,請(qǐng)估算,在租用公共自行車(chē)的市民中,騎車(chē)路程不超過(guò)6km的人數(shù)所占的百分比。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】代數(shù)式:①-x;②x2+x-1;③;④;⑤;⑥πm3y;⑦;

1)請(qǐng)上述代數(shù)式的序號(hào)分別填在相應(yīng)的圓圈內(nèi):

2)其中次數(shù)最高的多項(xiàng)式是___________________項(xiàng)式;

3)其中次數(shù)最高的單項(xiàng)式的次數(shù)是____________,系數(shù)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形OABC的鄰邊OA、OC分別與x、y軸重合,矩形OABC的對(duì)稱中心P(4,3),點(diǎn)QOA以每秒1個(gè)單位速度運(yùn)動(dòng),點(diǎn)MCB以每秒2個(gè)單位速度運(yùn)動(dòng),點(diǎn)NBC以每秒2個(gè)單位速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,三點(diǎn)同時(shí)出發(fā),當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí)同時(shí)停止.

1)根據(jù)題意,可得點(diǎn)B坐標(biāo)為_(kāi)_________,AC=_________;

2)求點(diǎn)Q運(yùn)動(dòng)幾秒時(shí),△PCQ周長(zhǎng)最小?

3)在點(diǎn)M、N、Q的運(yùn)動(dòng)過(guò)程中,能否使以點(diǎn)O、QM、N為頂點(diǎn)的四邊形是平行四邊形?若能,請(qǐng)求出t值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形ABCD中,點(diǎn)E、F、G分別是邊ADAB、BC的中點(diǎn),連接EP、FG

1)如圖1,直接寫(xiě)出EFFG的關(guān)系____________;

2)如圖2,若點(diǎn)PBC延長(zhǎng)線上一動(dòng)點(diǎn),連接FP,將線段FP以點(diǎn)F為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,得到線段FH,連接EH

①求證:△FFE≌△PFG;②直接寫(xiě)出EF、EH、BP三者之間的關(guān)系;

3)如圖3,若點(diǎn)PCB延長(zhǎng)線上的一動(dòng)點(diǎn),連接FP,按照(2)中的做法,在圖(3)中補(bǔ)全圖形,并直接寫(xiě)出EF、EH、BP三者之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,y=x的圖象向右平移1個(gè)單位得到y=x1的圖象,類(lèi)似的,y=k≠0)的圖象向左平移2個(gè)單位得到y=k≠0)的圖象.請(qǐng)運(yùn)用這一知識(shí)解決問(wèn)題.

如圖,已知反比例函數(shù)y=的圖象C與正比例函數(shù)y=axa≠0)的圖象l相交于點(diǎn)A1,m)和點(diǎn)B

1)寫(xiě)出點(diǎn)B的坐標(biāo),并求a的值;

2)將函數(shù)y=的圖象和直線AB同時(shí)向右平移nn0個(gè)單位長(zhǎng)度,得到的圖象分別記為C1l1,已知圖象C1經(jīng)過(guò)點(diǎn)M3,2).

①分別寫(xiě)出平移后的兩個(gè)圖象C1l1對(duì)應(yīng)的函數(shù)關(guān)系式;

②直接寫(xiě)出不等式+4≤ax的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上有A,B,C三點(diǎn),分別代表﹣36,﹣10,10,兩只電子螞蟻甲,乙分別從A,C兩點(diǎn)同時(shí)相向而行,甲的速度為4個(gè)單位/秒.

1)問(wèn)多少秒后,甲到A,BC的距離和為60個(gè)單位?

2)若乙的速度為6個(gè)單位/秒,兩只電子螞蟻甲,乙分別從AC兩點(diǎn)同時(shí)相向而行,問(wèn)甲,乙在數(shù)軸上的哪個(gè)點(diǎn)相遇?

3)在(1)(2)的條件下,當(dāng)甲到A、B、C的距離和為60個(gè)單位時(shí),甲調(diào)頭返回.問(wèn)甲,乙還能在數(shù)軸上相遇嗎?若能,求出相遇點(diǎn);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=2BC=4,點(diǎn)D為邊AB上一動(dòng)點(diǎn),DEAC,DFBC,垂足為EF. 連接EF,CD.

1)求證:EFCD;

2)當(dāng)EF為何值時(shí),EFAB;

3)當(dāng)四邊形ECFD為正方形時(shí),求EF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB90°,∠B50°,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△ABC,點(diǎn)B′恰好落在線段AB上,AC、AB′相交于O,則∠COA′的度數(shù)為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案