【題目】探索題:(x1)(x+1)x21;

(x1)(x2+x+1)x31

(x1)(x3+x2+x+1)x41;

(x1)(x4+x3+x2+x+1)x51

根據(jù)前面的規(guī)律,回答下列問題:

(1)(x1)(xn+xn1+xn2+…+x3+x2+x+1)_____.

(2)x3時,(31)(32015+32014+32013+…+33+32+3+1)______.

(3)求:22014+22013+22012+…+23+22+2+1的值.(請寫出解題過程).

【答案】(1)xn+11;(2)320161;(3)220151.

【解析】

1)每一式子的結(jié)果等于兩項的差,被減數(shù)等于左邊兩個因式的第一項相乘,減數(shù)都為1

2)根據(jù)題(1)的結(jié)果即可得;

3)將所求式子湊成規(guī)律等式左邊的形式,再利用題(1)的結(jié)果即可得.

(1)觀察規(guī)律知,結(jié)果為兩項之差,被減數(shù)等于左邊兩個因式的第一項相乘,減數(shù)都為1

則所求的式子;

2)由題(1)結(jié)果,令

則式子;

3

由題(1)結(jié)果可知,式子.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DBC的中點,過點DBC的垂線交∠BAC的平分線于點E,EF⊥AB于點F,EG⊥AC于點G.

(1)求證:BF=CG;

(2)若AB=10,AC=6,求線段CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DAC上一點(CD>AD),按要求完成下列各小題.(保留作圖痕跡不寫作法,標明各頂點字母)

(1)連接BD,求作DEF(E在線段CD上,點F在線段AC的右側(cè)),使得DEF≌△DAB;

(2)(1)的條件下,作∠EFH=ABC,交CA的延長線于點H,并證明HFBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,等腰直角三角形OAB的斜邊AOx軸上,點B的坐標為

1)求A點坐標;

2)過B軸于C,點DB出發(fā)沿射線BC以每秒2個單位的速度運動,連接AD、OD,動點D的運動時間為t,的面積為S,求St的數(shù)量關(guān)系,并直接寫出t的取值范圍;

3)在(2)的條件下,當點D運動到x軸下方時,延長ABy軸于E,過EH,在x軸正半軸上取點F,連接BFEHG,,當時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABEDFACF,若BDCDBECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC≌△ADE,∠DAC70°,∠BAE100°,BC、DE相交于點F,則∠DFB度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在二次函數(shù),的部分對應(yīng)值如下表:

則下列說法:圖象經(jīng)過原點;圖象開口向下;圖象經(jīng)過點;④時,的增大而增大;方程有兩個不相等的實數(shù)根.其中正確的是(

A. ①②③ B. ①③⑤ C. ①③④ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當點D在線段BC上時,

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是平行四邊形ABCD的邊AD上的一動點(點E不與A、D重合),連結(jié)CE并延長交BA的延長線于點F。

(1) △CDE與△FAE是否總相似?為什么?

(2)當E點為AD的中點時,求證:CE=EF;

(3)當E點移至使EC⊥BC時,設(shè)AB=4cm,EF=6cm,∠D=60°時,求CB的長。(結(jié)果不取近似值)

查看答案和解析>>

同步練習(xí)冊答案