【題目】如圖1,拋物線y=﹣x2+2x+3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,連接BC.
(1)求直線BC的解析式;
(2)如圖2,點(diǎn)P是拋物線在第一象限內(nèi)的一點(diǎn),作PQ∥y軸交BC于Q,當(dāng)線段PQ的長(zhǎng)度最大時(shí),在x軸上找一點(diǎn)M,使PM+CM的值最小,求PM+CM的最小值;
(3)拋物線的頂點(diǎn)為點(diǎn)E,連接AE,在拋物線上是否存在一點(diǎn)N,使得直線AN與直線AE的夾角為45度,若存在請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x+3;(2);(3)點(diǎn)N的坐標(biāo)為:(﹣,).
【解析】
(1)拋物線x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,則點(diǎn)A、B、C的坐標(biāo)分別為:(-1,0)、(3,0)、(0,3),即可求解;
(2)取點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C′(0,-3),連接PC′交x軸于點(diǎn)M,則點(diǎn)M為所求點(diǎn),此時(shí)PM+CM的最小,即可求解;
(3)設(shè)GM=AG=x,則GE=2x,AE=AG+EG=3x=,解得:x=,HM2=AH2-OM2=(x)24=,故HM=,則點(diǎn)H(1,),將點(diǎn)A、H代入一次函數(shù)表達(dá)式并解得:直線AH(N)的表達(dá)式為:y=x+,即可求解.
解:(1)拋物線y=﹣x2+2x+3,拋物線x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,
則點(diǎn)A、B、C的坐標(biāo)分別為:(﹣1,0)、(3,0)、(0,3),
∴將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式:y=kx+b并解得:
直線BC的表達(dá)式為:y=﹣x+3;
(2)設(shè)點(diǎn)P(x,﹣x2+2x+3),則點(diǎn)Q(x,﹣x+3),
PQ=﹣x2+2x+3+x﹣3=﹣x2+3x,
當(dāng)x=時(shí),PQ有最大值,此時(shí)點(diǎn)P(,);
取點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C′(0,﹣3),連接PC′交x軸于點(diǎn)M,則點(diǎn)M為所求點(diǎn),此時(shí)PM+CM的最小,
∴PM+CM的最小值=PC′=;
(3)如圖,設(shè)直線AN交對(duì)稱軸于點(diǎn)H,故點(diǎn)H作HG⊥AE于點(diǎn)G,對(duì)稱軸交x軸于點(diǎn)M,
tan∠AEM=,設(shè)GM=AG=x,則GE=2x,
AE=AG+EG=3x=,解得:x=,
HM2=AH2﹣OM2=()2﹣4=,
∴HM=,則點(diǎn)H(1,),
將點(diǎn)A、H代入一次函數(shù)表達(dá)式并解得:
直線AH(N)的表達(dá)式為:;
聯(lián)立直線BC和直線AH,則:
,
解得:x=或﹣1(舍去﹣1),
故點(diǎn)N的坐標(biāo)為:(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△中,,;若將△ 繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°到△ 的位置,連接,則的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一棵大樹在一次強(qiáng)臺(tái)風(fēng)中折斷倒下,未折斷樹桿與地面仍保持垂直的關(guān)系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測(cè)得米,塔高米.在某一時(shí)刻的太陽照射下,未折斷樹桿落在地面的影子長(zhǎng)為米,且點(diǎn)、、、在同一條直線上,點(diǎn)、、也在同一條直線上.求這棵大樹沒有折斷前的高度.(結(jié)果精確到,參考數(shù)據(jù): , , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn)問題)愛好數(shù)學(xué)的小明在做作業(yè)時(shí)碰到這樣的一道題目:
如圖1,點(diǎn)O為坐標(biāo)原點(diǎn),⊙O的半徑為1,點(diǎn)A(2,0).動(dòng)點(diǎn)B在⊙O上,連結(jié)AB,作等邊△ABC(A,B,C為順時(shí)針順序),求OC的最大值.
(解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以OB為邊在OB的左側(cè)作等邊三角形BOE,連接AE.
(1)請(qǐng)你找出圖中與OC相等的線段,并說明理由;
(2)請(qǐng)直接寫出線段OC的最大值.
(遷移拓展)
(3)如圖2,BC=4,點(diǎn)D是以BC為直徑的半圓上不同于B、C的一個(gè)動(dòng)點(diǎn),以BD為邊作等邊△ABD,請(qǐng)求出AC的最值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬州區(qū)中小學(xué)社會(huì)活動(dòng)實(shí)踐基地開展了人與社會(huì)、人與自然、人與自我的綜合實(shí)踐活動(dòng),其中高空項(xiàng)目能培養(yǎng)學(xué)生不怕困難,不畏艱險(xiǎn)的精神.在高空項(xiàng)目中有以下四個(gè)特色實(shí)踐活動(dòng):“A.合力制勝,B.空中斷橋,C.絕壁飛胎,D.天羅地網(wǎng)”.為了解學(xué)生最喜愛哪項(xiàng)綜合實(shí)踐活動(dòng),隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每位學(xué)生只能選擇一項(xiàng)),將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中提供的信息回答下列問題:
(1)本次一共調(diào)查了 名學(xué)生,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)現(xiàn)有最喜愛A,B,C,D活動(dòng)項(xiàng)目的學(xué)生各一人,學(xué)校要從這四人中隨機(jī)選取兩人交流活動(dòng)體會(huì),請(qǐng)用列表或畫樹狀圖的方法求出恰好選取最喜愛C和D項(xiàng)目的兩位學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)的對(duì)稱軸為x=-1,與x軸的一個(gè)交點(diǎn)為(2,0).若關(guān)于x的一元二次方程ax2+bx+c=p(p>0)有整數(shù)根,則p的值有( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于二次函數(shù)y=-x2-2x+3說法正確的是( 。
A. 當(dāng)時(shí),函數(shù)最大值4
B. 當(dāng)時(shí),函數(shù)最大值2
C. 將其圖象向上平移3個(gè)單位后,圖象經(jīng)過原點(diǎn)
D. 將其圖象向左平移3個(gè)單位后,圖象經(jīng)過原點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為16m,寬為6m,拋物線的最高點(diǎn)C離地面AA1的距離為8m.
(1)按如圖所示的直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式.
(2)一大型汽車裝載某大型設(shè)備后,高為7m,寬為4m,如果該隧道內(nèi)設(shè)雙向行車道,那么這輛貸車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com