【題目】如圖,一棵大樹在一次強(qiáng)臺(tái)風(fēng)中折斷倒下,未折斷樹桿與地面仍保持垂直的關(guān)系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測(cè)得米,塔高米.在某一時(shí)刻的太陽(yáng)照射下,未折斷樹桿落在地面的影子長(zhǎng)為米,且點(diǎn)、、、在同一條直線上,點(diǎn)、、也在同一條直線上.求這棵大樹沒有折斷前的高度.(結(jié)果精確到,參考數(shù)據(jù): , , ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代偉大的數(shù)學(xué)家劉徽將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理.如圖,若a=4,b=6,則該直角三角形的周長(zhǎng)為( )
A.18B.20C.24D.26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22時(shí),
教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).
(1)求教學(xué)樓AB的高度;
(2)學(xué)校要在A、E之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin22≈,cos22≈,tan22≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成陰影(圓形)的示意圖.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為_____m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于反比例函,下列說法中不正確的是( )
A.點(diǎn)在它的圖象上
B.它的圖象在第一、三象限
C.當(dāng)時(shí),隨的增大而減小
D.如果點(diǎn)在它的圖象上,則點(diǎn)不在它的圖象上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,已知,,,點(diǎn)在的延長(zhǎng)線上,點(diǎn)在的延長(zhǎng)線上,有下列結(jié)論:①;②;③;④若,則點(diǎn)到的距離為.則其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識(shí)背景:當(dāng)a>0且x>0時(shí),因?yàn)?/span>≥0,所以,從而≥(當(dāng)x=時(shí)取等號(hào)).
設(shè)函數(shù)=(>0,x>0),由上述結(jié)論可知,當(dāng)x=時(shí),該函數(shù)有最小值為.
應(yīng)用舉例:已知函數(shù)=x(x>0)與函數(shù)=(x>0),則當(dāng)x==2時(shí),=有最小值為=4.
解決問題:
(1)已知函數(shù)=(x>-3)與函數(shù)=(x>-3),當(dāng)x為何值時(shí),有最小值?最小值是多少?
(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時(shí),該設(shè)備平均每天的租賃使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,連接BC.
(1)求直線BC的解析式;
(2)如圖2,點(diǎn)P是拋物線在第一象限內(nèi)的一點(diǎn),作PQ∥y軸交BC于Q,當(dāng)線段PQ的長(zhǎng)度最大時(shí),在x軸上找一點(diǎn)M,使PM+CM的值最小,求PM+CM的最小值;
(3)拋物線的頂點(diǎn)為點(diǎn)E,連接AE,在拋物線上是否存在一點(diǎn)N,使得直線AN與直線AE的夾角為45度,若存在請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,割線ABC與⊙O相交于B、C兩點(diǎn),D為⊙O上一點(diǎn),E為弧BC的中點(diǎn),OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求證明:AD是⊙D的切線;
(2)若∠A=60°,⊙O的半徑為4,求ED的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com