【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號和π)
【答案】
(1)解:連結(jié)OC,如圖,
∵AD為⊙O的切線,
∴AD⊥AB,
∴∠BAD=90°,
∵OD∥BC,
∴∠1=∠3,∠2=∠4,
∵OB=OC,
∴∠3=∠4,
∴∠1=∠2,
在△OCD和△OAD中,
,
∴△AOD≌△COD(SAS);
∴∠OCD=∠OAD=90°,
∴OC⊥DE,
∴DE是⊙O的切線;
(2)解:設半徑為r,則OE=AE﹣OA=6﹣r,OC=r,
在Rt△OCE中,∵OC2+CE2=OE2,
∴r2+(2 )2=(6﹣r)2,解得r=2,
∵tan∠COE= = = ,
∴∠COE=60°,
∴S陰影部分=S△COE﹣S扇形BOC
= ×2×2 ﹣
=2 ﹣ π.
【解析】(1)連結(jié)OC,如圖,先根據(jù)切線的性質(zhì)得∠BAD=90°,再根據(jù)平行線的性質(zhì),由OD∥BC得∠1=∠3,∠2=∠4,加上∠3=∠4,則∠1=∠2,接著證明△AOD≌△COD,得到∠OCD=∠OAD=90°,于是可根據(jù)切線的判定定理得到DE是⊙O的切線;(2)設半徑為r,則OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中利用勾股定理得到r2+(2 )2=(6﹣r)2 , 解得r=2,再利用正切函數(shù)求出∠COE=60°,然后根據(jù)扇形面積公式和S陰影部分=S△COE﹣S扇形BOC進行計算即可.
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可以坐6人,如果把多張桌子擺在一起,可以有以下兩種擺放方式.
(1)當有5張桌子時,第一種擺放方式能坐 人,第二種擺放方式能坐 人,
(2)當有n張桌子時,第一種擺放方式能坐 人,第二種擺放方式能坐 人,
(3)一天中午餐廳要接待98位顧客共同就餐(即桌子要擺在一起),但餐廳只有25張這樣的餐桌,若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,CB=CD,AB ∥ CD.
(1)求證:四邊形ABCD是菱形.
(2)當△ABD滿足什么條件時,四邊形ABCD是正方形.(直接寫出一個符合要求的條件).
(3)對角線AC和BD交于點O,∠ ADC =120°,AC=8, P為對角線AC上的一個動點,連接DP,將DP繞點D逆時針方向旋轉(zhuǎn)120°得到線段DP1,直接寫出A P1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設方程兩實數(shù)根分別為x1 , x2 , 且滿足x12+x22=3x1x2 , 求實數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);
(2)如圖(2),將∠COD繞頂點O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個旋轉(zhuǎn)過程中,當∠AOC的度數(shù)是多少時,∠COE=2∠DOB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在BC上,求證:AB=AC;
(2)如圖2,若點O在△ABC的內(nèi)部,求證:AB=AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖四個幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個面,9條棱,6個頂點,觀察圖形,填寫下面的空.
(1)四棱柱有 個面, 條棱, 個頂點;
(2)六棱柱有 個面, 條棱, 個頂點;
(3)由此猜想n棱柱有 個面, 條棱, 個頂點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,正確的個數(shù)是 ( )
①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點C(0,-2),直線l:y=kx-2k無論k取何值,直線總過定點B,
(1)求定點B的坐標.
(2)如圖1,若點D為直線BC上(點(-1,-3)除外)一動點,過點D作x軸的垂線交y= - 3于點E,點F在直線BC上,距離D點為個單位,D點橫坐標為t,ΔDEF的面積為S,求S與t函數(shù)關系式.
(3)若直線BC關于x軸對稱后再向上平移5個單位得到直線B1C1,如圖2,點G(1,a)和H(6,b)是直線B1C1上兩點,點P(m,n)為第一象限內(nèi)(G、H兩點除外)的一點,,且mn=6,直線PG和PH為分別交y軸于點MN兩點,問線段OM、ON有什么數(shù)量關系,請證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com