【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
【答案】(1)證明詳見解析;(2).
【解析】
試題分析:(1)根據(jù)平行四邊形和角平分線的性質(zhì)可得AB=BE,AB=AF,AF=BE,從而證明四邊形ABEF是菱形;
(2)作PH⊥AD于H,根據(jù)四邊形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,從而得到PH=,DH=5,然后利用銳角三角函數(shù)的定義求解即可.
試題解析:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠DAE=∠AEB.
∵AE是角平分線,
∴∠DAE=∠BAE.
∴∠BAE=∠AEB.
∴AB=BE.
同理AB=AF.
∴AF=BE.
∴四邊形ABEF是平行四邊形.
∵AB=BE,
∴四邊形ABEF是菱形.
(2)作PH⊥AD于H,
∵四邊形ABEF是菱形,∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=AB=2,
∴PH=,DH=5,
∴tan∠ADP==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有個點(diǎn)A(-1,0),點(diǎn)A第1次向上跳動一個單位至點(diǎn)A1(-1,1),緊接著第2次向右跳動2個單位至點(diǎn)A2(1,1),第3次向上跳動1個單位,第4次向左跳動3個單位,第5次又向上跳動1個單位,第6次向右跳動4個單位,…,依次規(guī)律跳動下去,點(diǎn)A第2017次跳動至點(diǎn)A2017的坐標(biāo)是( )
A. (-504,1008) B. (-505,1009) C. (504,1009) D. (-503,1008)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個兩位數(shù)的十位數(shù)是a,個位數(shù)字比十位數(shù)字的2倍少1.用含a的代數(shù)式表示這個兩位數(shù)正確的是( 。
A. 3a﹣1 B. 12a﹣1 C. 12a﹣2 D. 30a﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年,我國約有9400000人參加高考,將9400000用科學(xué)記數(shù)法表示為( )
A.9.4×105
B.9.4×106
C.0.94×106
D.94×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC,則下列結(jié)論①abc<0;②b2﹣4ac>0;③ac﹣b+1=0;④OAOB=.其中正確結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某星期天小李步行取圖書館看書,途中遇到一個紅燈,停下來耽誤了幾分鐘,為了趕時間,他以更快速度步行到圖書館,下面幾幅圖是步行路程s(米)與行進(jìn)時間t(分)的關(guān)系的示意圖,你認(rèn)為正確的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com