如圖,將含60°角的直角三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°度后得到△AB′C′,點(diǎn)B經(jīng)過(guò)的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是( )
A.
B.
C.
D.π
【答案】分析:圖中S陰影=S扇形ABB′+S△AB′C′-S△ABC
解答:解:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
∴BC=ACtan60°=1×=,AB=2
∴S△ABC=AC•BC=
根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.
∴S陰影=S扇形ABB′+S△AB′C′-S△ABC
=
=
故選A.
點(diǎn)評(píng):本題考查了扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì).求不規(guī)則的圖形的面積,可以轉(zhuǎn)化為幾個(gè)規(guī)則圖形的面積的和或差來(lái)求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將一個(gè)含30°角的三角板和一個(gè)含45°角的三角板如圖擺放,∠ACB與∠DCE完全重合,∠C=90°,∠A=45°,∠EDC=60°,AB=4
2
,DE=6,則EB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、一副直角三角板疊放如圖所示,現(xiàn)將含45°角的三角板ADE固定不動(dòng),把含30°角的三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α(α=∠BAD且0°<α<180°),使兩塊三角板至少有一組邊平行.
(1)如圖①,α=
15
°時(shí),BC∥DE;
(2)請(qǐng)你分別在圖②、圖③的指定框內(nèi),各畫一種符合要求的圖形,標(biāo)出α,并完成各項(xiàng)填空:
圖②中α=
60
°時(shí),
BC
DA
;圖③中α=
105
°時(shí),
BC
EA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•湘潭)Rt△ABC與Rt△FED是兩塊全等的含30°、60°角的三角板,按如圖(一)所示拼在一起,CB與DE重合.
(1)求證:四邊形ABFC為平行四邊形;
(2)取BC中點(diǎn)O,將△ABC繞點(diǎn)O順時(shí)鐘方向旋轉(zhuǎn)到如圖(二)中△A'B'C'位置,直線B'C'與AB、CF分別相交于P、Q兩點(diǎn),猜想OQ、OP長(zhǎng)度的大小關(guān)系,并證明你的猜想;
(3)在(2)的條件下,指出當(dāng)旋轉(zhuǎn)角至少為多少度時(shí),四邊形PCQB為菱形?(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD.
(1)如圖1,直接寫出∠ABD的大。ㄓ煤恋氖阶颖硎荆;
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連接DE,若∠DEC=45°,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大連)將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α得到△DBE,DE的延長(zhǎng)線與AC相交于點(diǎn)F,連接DA、BF.
(1)如圖1,若∠ABC=α=60°,BF=AF.
①求證:DA∥BC;②猜想線段DF、AF的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖2,若∠ABC<α,BF=mAF(m為常數(shù)),求
DFAF
的值(用含m、α的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案