【題目】甲乙兩位同學參加數(shù)學綜合素質(zhì)測試,各項成績?nèi)缦卤恚海▎挝唬悍郑?/span>

數(shù)與代數(shù)

空間與圖形

統(tǒng)計與概率

綜合與實踐

學生甲

93

93

89

90

學生乙

94

92

94

86

1)分別計算甲、乙同學成績的中位數(shù);

2)如果數(shù)與代數(shù),空間與圖形,統(tǒng)計與概率,綜合與實踐的成績按4312計算,那么甲、乙同學的數(shù)學綜合素質(zhì)成績分別為多少分?

【答案】1)甲的中位數(shù)91.5,乙的中位數(shù)93;(2)甲的數(shù)學綜合成績92,乙的數(shù)學綜合成績91.8.

【解析】

1)由中位數(shù)的定義求解可得;

2)根據(jù)加權平均數(shù)的定義計算可得.

1)甲的中位數(shù)=,乙的中位數(shù)=;

2)甲的數(shù)學綜合成績=93×0.4+93×0.3+89×0.1+90×0.292

乙的數(shù)學綜合成績=94×0.4+92×0.3+94×0.1+86×0.291.8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系網(wǎng)格中,三角形的頂點坐標分別是 .將三角形平移,使頂點平移到坐標原點 處,得到三角形 .

1的坐標是________,的坐標是________.

2)畫出平移后的 .

3)求的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司隨機選取40名員工進行普法知識考查,對考查成績進行統(tǒng)計(成績均為整數(shù),滿分100分),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計表.解答下列問題:

(1) 表中a__________,b__________c__________

(2) 請補全頻數(shù)分布直方圖;

組別

分數(shù)段/

頻數(shù)/人數(shù)

頻率

1

50.5~60.5

2

a

2

60.5~70.5

6

0.15

3

70.5~80.5

b

c

4

80.5~90.5

12

0.30

5

90.5~100.5

6

0.15

合計

40

1.00

(3) 該公司共有員工3000人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計該公司員工六五普法知識知曉程度達到優(yōu)秀的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了改善辦學條件,計劃購置一批電子白板和一批筆記本電腦,經(jīng)投標,購買1塊電子白板比買3臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.

(1)求購買1塊電子白板和一臺筆記本電腦各需多少元?

(2)根據(jù)該校實際情況,需購買電子白板和筆記本電腦的總數(shù)為396,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?

(3)上面的哪種購買方案最省錢?按最省錢方案購買需要多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2(a≠0)與一次函數(shù)y=kx﹣2的圖象相交于A、B兩點,如圖所示,其中A(﹣1,﹣1),求OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是線段BD上一點,分別以BC,CD為邊在BD同側(cè)作等邊ABC和等邊CDEADCE于點FBEAC于點G,則圖中可通過旋轉(zhuǎn)而相互得到的三角形有   對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究題:如圖,用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,它們的棋子數(shù)依次表示為 a1a2,a3a4,,an

請你認真觀察上面四個圖案,從中發(fā)現(xiàn)規(guī)律,并試著解答下列問題:

1)寫出 a1,a2,a3a4 的值;

2)求 a7 的值;

3)用 n 表示出 an,并判斷第幾個圖案有 6055 個黑色棋子.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:僅用無刻度直尺,保留必要的畫圖痕跡.

1)在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;

2)在圖2中畫出線段AB的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀并解決問題:歸納

人們通過長期觀察發(fā)現(xiàn),如果早晨天空中有棉絮狀的高積云,那么午后常有雷雨降臨,于是有了朝有破絮云,午后雷雨臨的諺語.在數(shù)學里,我們也常用這樣的方法探求規(guī)律,例如:三角形有3個頂點,如果在它的內(nèi)部再畫n個點,并以(n+3)個點為頂點,把三角形剪成若干個小三角形,那么最多可以剪得多少個這樣的三角形? .為了解決這個問題,我們可以從n=1、n=2nr=3 等具體的、簡單的情形入手,探索最多可以剪得的三角形個數(shù)的變化規(guī)律.

(1)完成表格信息:_______、_________;

(2)通過觀察、比較,可以發(fā)現(xiàn):三角形內(nèi)的點每增加1個,最多可以剪得的三角形增加_________.于是,我們可以猜想:當三角形內(nèi)的點的個數(shù)為n時,最多可以剪得____________個三角形.像這樣通過對現(xiàn)象的觀察、分析,從特殊到-般地探索這類現(xiàn)象的規(guī)律、提出猜想的思想方法稱為歸納.在日常生活中,人們互相交談時,常常有人在列舉了一些現(xiàn)象后,說(即列舉的現(xiàn)象)說明....其實這就是運用了歸納的方法.用歸納的方法得出的結(jié)論不一定正確,是否正確需要加以證實.

(3)請你借助表格嘗試用歸納的方法探索: 1+3+5+7+......+(2n-1)的和是多少?并加以證實.

查看答案和解析>>

同步練習冊答案