【題目】將方程3x2x=2(x+1)2化成一般形式后,一次項(xiàng)系數(shù)為(   )

A. 5B. 5C. 3D. 3

【答案】D

【解析】

運(yùn)用完全平方公式展開,然后移項(xiàng)、合并同類項(xiàng),把原方程化為一般形式,根據(jù)一元二次方程的一般形式解答即可.

解:方程3x2x2x12化為一般形式為5x23x20

則一次項(xiàng)系數(shù)為3,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)圖象C1C2上的任一點(diǎn). 當(dāng)a x b時(shí),有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個(gè)函數(shù)在a x b上是“相鄰函數(shù)”,否則稱它們在a x b上是“非相鄰函數(shù)”.

例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時(shí),y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個(gè)函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.

(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;

(2)若函數(shù)y = x2 - xy = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;

(3)若函數(shù)y =y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件不能證明△ABC≌△DCB的是(

A.AB=DC,AC=DB
B.AB=DC,∠ABC=∠DCB
C.BO=CO,∠A=∠D
D.AB=DC,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是平行四邊形ABCD邊AB上一點(diǎn),且AB=3AP,連接CP,并延長CP、DA交于點(diǎn)E,則△AEP與△DEC的周長之比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,試說明AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于AB兩點(diǎn),B點(diǎn)坐標(biāo)為(30),與y軸交于點(diǎn)C0﹣3

1)求拋物線的解析式;

2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)BCP的面積最大時(shí),求點(diǎn)P的坐標(biāo)和BCP的最大面積.

3)當(dāng)BCP的面積最大時(shí),在拋物線上是否點(diǎn)Q(異于點(diǎn)P),使BCQ的面積等于BCP,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(m+3,m+1)在直角坐標(biāo)系的x軸上,則P點(diǎn)的坐標(biāo)為(
A.(0,﹣2)
B.(2,0)
C.(0,2)
D.(0,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式﹣4x≥﹣12的正整數(shù)解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案