【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長;
(2)如果∠CAD:∠BAD=1:2,求∠B的度數.
【答案】(1) 14cm;(2)36°
【解析】分析:(1)折疊時,對稱軸為折痕DE,DE垂直平分線段AB,由垂直平分線的性質得DA=DB,再把△ACD的周長進行線段的轉化即可;
(2)設∠CAD=x,則∠BAD=2x,根據(1)DA=DB,可證∠B=∠BAD=2x,在Rt△ABC中,利用互余關系求x,再求∠B.
詳解:
(1)由折疊的性質可知,DE垂直平分線段AB,
根據垂直平分線的性質可得:DA=DB,
所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;
(2)設∠CAD=x,則∠BAD=2x,
∵DA=DB,
∴∠B=∠BAD=2x,
在Rt△ABC中,∠B+∠BAC=90°,
即:2x+2x+x=90°,x=18°,
∠B=2x=36°.
科目:初中數學 來源: 題型:
【題目】在有理數的原有運算法則中,我們補充定義一種新運算“★”如下:a★b=(a+b)(a﹣b),例如:5★3=(5+3)×(5﹣3)=8×2=16,下面給出了關于這種新運算的幾個結論:① 3★(﹣2)=5;②a★b=b★a;③若b=0,則a★b=a2;④若a★b=0,則a=b.其中正確結論的有__;(只填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?
(2)某同學測試成績?yōu)?/span>70分,他的綜合評價得分有可能達到A等嗎?為什么?
(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC 且AD = 9cm,BC = 6cm,點P、Q分別從點A、C同時出發(fā),點P以1cm/s的速度由A向D運動,點Q以2cm/s的速度由C向B運動.問幾秒后直線PQ將四邊形ABCD截出一個平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2、C2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,BE平分∠ABC,CF平分∠BCD,BE、CF交于點G.若使EF= AD,那么平行四邊形ABCD應滿足的條件是( )
A.∠ABC=60°
B.AB:BC=1:4
C.AB:BC=5:2
D.AB:BC=5:8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將腰長為4的等腰直角三角形放在直角坐標系中,順次連接各邊中點得到第1個三角形,再順次連接各邊中點得到第2個三角形……,如此操作下去,那么,第6個三角形的直角頂點坐標為( 。
A. (﹣,) B. (﹣,) C. (﹣,) D. (﹣,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某巡警騎摩托車在一條南北大道上巡邏,某天他從崗亭出發(fā),晚上停留在處,規(guī)定向北方向為正,當天行駛紀錄如下(單位:千米)
,,,,,,,
在崗亭何方?距崗亭多遠?
在行駛過程中,最遠處離出發(fā)點有多遠?
若摩托車行駛千米耗油升,這一天共耗油多少升?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com