【題目】教科書中這樣寫道:“我們把多項(xiàng)式及叫做完全平方式”,如果一個多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個項(xiàng),使整個式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.
例如:分解因式
;例如求代數(shù)式的最小值..可知當(dāng)時,有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式: _____
(2)當(dāng)為何值時,多項(xiàng)式有最小值,并求出這個最小值.
(3)當(dāng)為何值時.多項(xiàng)式有最小值并求出這個最小值
【答案】(1);(2)時,最小值為-;(3),最小值為
【解析】
(1)根據(jù)閱讀材料,先將m24m5變形為m24m+49,再根據(jù)完全平方公式寫成(m2)29,然后利用平方差公式分解即可;
(2)利用配方法將多項(xiàng)式轉(zhuǎn)化為,然后利用非負(fù)數(shù)的性質(zhì)進(jìn)行解答;
(3)利用配方法將多項(xiàng)式轉(zhuǎn)化為,然后利用非負(fù)數(shù)的性質(zhì)進(jìn)行解答.
(1)m24m5
=m24m+49
=(m2)29=
(m2+3)(m23)=
(m+1)(m5).
故答案為;
(2)
=a24a+b2+6b+8
=a24a+4+b2+6b+9-5
=,
當(dāng)a=2,b=3時,有最小值,最小值為-5;
(3)∵
=
=
=
=
∴當(dāng)a=4,b=3時,多項(xiàng)式有最小值17.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.
(2)如圖1,求AF的長.
(3)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,點(diǎn)P的速度為每秒1cm,設(shè)運(yùn)動時間為t秒.
①問在運(yùn)動的過程中,以A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形有可能是矩形嗎?若有可能,請求出運(yùn)動時間t和點(diǎn)Q的速度;若不可能,請說明理由.
②若點(diǎn)Q的速度為每秒0.8cm,當(dāng)A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥,在做藥效試驗(yàn)時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時間t(h)的變化圖象如圖所示,根據(jù)圖象回答:
(1)服藥后幾時血液中含藥量最高?每毫升血液中含多少微克?
(2)在服藥幾時內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時后,每毫升血液中含藥量逐漸下降?
(3)服藥后14 h時,每毫升血液中含藥量是多少微克?
(4)如果每毫升血液中含藥量為4微克及以上時,治療疾病有效,那么有效時間為幾時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天上午營運(yùn)時是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時,小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的方程組,給出下列結(jié)論:
①是方程組的解;②無論a取何值,x,y的值都不可能互為相反數(shù);
③當(dāng)a=1時,方程組的解也是方程x+y=4﹣a的解;④x,y的都為自然數(shù)的解有4對.
其中正確的個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在 Rt△ABC中,∠ABC=90°, BD平分∠ ABC,∠CAD=45, AC=4,點(diǎn)E是線段BD的中點(diǎn),則CE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一艘貨船和一艘客船同時從港口A出發(fā),客船每小時比貨船多走5海里,客船與貨船速度的比為4:3,貨船沿東偏南10°方向航行,2小時后貨船到達(dá)B處,客船到達(dá)C處,若此時兩船相距50海里.
(1)求兩船的速度分別是多少?
(2)求客船航行的方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在△ABC 中,∠BAC=70°,點(diǎn) D 在 BC 的延長線上,三角形的內(nèi)角∠ABC 與外角∠ACD 的角平分線 BP,CP 相交于點(diǎn) P,求∠P 的度數(shù).(寫出完整的解答過程)
(感知):圖(1)中,若∠BAC=m°,那么∠P= °(用含有 m 的代數(shù)式表示)
(探究):如圖(2)在四邊形 MNCB 中,設(shè)∠M=α,∠N=β,α+β>180°,四邊形的內(nèi)角∠MBC與外角∠NCD 的角平分線 BP,CP 相交于點(diǎn) P.為了探究∠P 的度數(shù)與 α 和 β 的關(guān)系,小明同學(xué)想到將這個問題轉(zhuǎn)化圖(1)的模型,因此,他延長了邊 BM 與 CN,設(shè)它們的交點(diǎn)為點(diǎn) A, 如圖( 3 ), 則∠ A= (用含有 α 和 β 的代數(shù)式表示), 因此∠P= .(用含有 α 和 β 的代數(shù)式表示)
(拓展):將(2)中的 α+β>180°改為 α+β<180°,四邊形的內(nèi)角∠MBC 與外角∠NCD 的角平分線所在的直線相交于點(diǎn) P,其它條件不變,請直接寫出∠P= .(用 α,β的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,E是對角線AC上一點(diǎn),F(xiàn)是線段BC延長線上一點(diǎn),且CF=AE,連接BE、EF.
(1)若E是線段AC的中點(diǎn),如圖1,易證:BE=EF(不需證明);
(2)若E是線段AC或AC延長線上的任意一點(diǎn),其它條件不變,如圖2、圖3,線段BE,EF有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com