【題目】已知過(guò)原點(diǎn)O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點(diǎn)分別為P、Q,PQ交y軸于點(diǎn)K,拋物線經(jīng)過(guò)P、Q兩點(diǎn),頂點(diǎn)為N(0,6),且與x軸交于A、B兩點(diǎn).
(1)求點(diǎn)P的坐標(biāo);
(2)求拋物線解析式;
(3)在直線y=nx+m中,當(dāng)n=0,m≠0時(shí),y=m是平行于x軸的直線,設(shè)直線y=m與拋物線相交于點(diǎn)C、D,當(dāng)該直線與⊙M相切時(shí),求點(diǎn)A、B、C、D圍成的多邊形的面積(結(jié)果保留根號(hào)).
【答案】(1)點(diǎn)P的坐標(biāo)為(,3).
(2)拋物線的解析式為y=﹣x2+6
(3)點(diǎn)A、B、C、D圍成的多邊形的面積為4+2或6.
【解析】
試題(1)由切線的性質(zhì)可得∠MPO=90°,由勾股定理可求出PO,由三角形PMO的面積利用面積法可求出PK,然后再運(yùn)用勾股定理可求出OK,就可得到點(diǎn)P的坐標(biāo).
(2)可設(shè)頂點(diǎn)為(0,6)的拋物線的解析式為y=ax2+6,然后將點(diǎn)P的坐標(biāo)代入就可求出拋物線的解析式.
(3)直線y=m與⊙M相切有兩種可能,只需對(duì)這兩種情況分別討論就可求出對(duì)應(yīng)多邊形的面積.
試題解析:(1)如圖1,
∵⊙M與OP相切于點(diǎn)P,
∴MP⊥OP,即∠MPO=90°.
∵點(diǎn)M(0,4)即OM=4,MP=2,
∴OP=2.
∵⊙M與OP相切于點(diǎn)P,⊙M與OQ相切于點(diǎn)Q,
∴OQ=OP,∠POK=∠QOK.
∴OK⊥PQ,QK=PK.
∴PK=.
∴OK==3.
∴點(diǎn)P的坐標(biāo)為(,3).
(2)如圖2,
設(shè)頂點(diǎn)為(0,6)的拋物線的解析式為y=ax2+6,
∵點(diǎn)P(,3)在拋物線y=ax2+6上,
∴3a+6=3.
解得:a=﹣1.
則該拋物線的解析式為y=﹣x2+6.
(3)當(dāng)直線y=m與⊙M相切時(shí),
則有=2.
解得;m1=2,m2=6.
①m=2時(shí),如圖3,
則有OH=2.
當(dāng)y=2時(shí),解方程﹣x2+6=2得:x=±2,
則點(diǎn)C(2,2),D(﹣2,2),CD=4.
同理可得:AB=2.
則S梯形ABCD=(DC+AB)OH=×(4+2)×2=4+2.
②m=6時(shí),如圖4,
此時(shí)點(diǎn)C、點(diǎn)D與點(diǎn)N重合.
S△ABC=ABOC=×2×6=6.
綜上所述:點(diǎn)A、B、C、D圍成的多邊形的面積為4+2或6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD紙片中,已知∠A=160°,∠B=30°,∠C=60°,四邊形ABCD紙片分別沿EF,GH,OP,MN折疊,使A與A′、B與B′、C與C′、D與D′重合,則∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( 。
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由物理學(xué)知識(shí)知道,在力F的作用下,物體會(huì)在力F的方向上發(fā)生位移s,力所做的功W=Fs.當(dāng)W為定值時(shí),F與s之間的函數(shù)關(guān)系圖象如圖所示.
(1)力F所做的功是多少?
(2)試確定F、s之間的函數(shù)解析式;
(3)當(dāng)F=4N時(shí),s是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一次函數(shù)y=x+6,下列結(jié)論錯(cuò)誤的是( )
A. 函數(shù)值隨自變量增大而增大 B. 函數(shù)圖像與軸正方向成45°角
C. 函數(shù)圖像不經(jīng)過(guò)第四象限 D. 函數(shù)圖像與軸交點(diǎn)坐標(biāo)是(0,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),并且與x軸交于點(diǎn)D、E,點(diǎn)A為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)連接CD,在拋物線的對(duì)稱軸上是否存在一點(diǎn)P使△PCD為直角三角形,若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷(xiāo)售完,小明對(duì)銷(xiāo)售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,日銷(xiāo)售量y(kg)與上市時(shí)間x(天)的函數(shù)關(guān)系如圖1,櫻桃價(jià)格z(元/kg)與上市時(shí)間x(天)的函數(shù)關(guān)系式如圖2.
(1)求小明家櫻桃的日銷(xiāo)售量y與上市時(shí)間x的函數(shù)解析式.
(2)求當(dāng)5≤x≤20時(shí),櫻桃的價(jià)格z與上市時(shí)間x的函數(shù)解析式.
(3)求哪一天的銷(xiāo)售金額達(dá)到最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BE⊥AC于點(diǎn)E,BC的垂直平分線分別交AB、BE于點(diǎn)D、G,垂足為H,CD⊥AB,CD交BE于點(diǎn)F
(1)求證:△BDF≌△CDA,并寫(xiě)出BF與AC的數(shù)量關(guān)系.
(2)若DF=DG,求證:①BE平分∠ABC; ②CE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了解全校1600名學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查.問(wèn)卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)問(wèn):在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)估計(jì)全校所有學(xué)生中有多少人乘坐公交車(chē)上學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=kx(k>0)的圖象與x軸相交所成的銳角為70°,定點(diǎn)A的坐標(biāo)為(0,8),P為y軸上的一個(gè)動(dòng)點(diǎn),M、N為函數(shù)y=kx(k>0)的圖象上的兩個(gè)動(dòng)點(diǎn),則AM+MP+PN的最小值為( 。
A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com