【題目】小明家今年種植的紅燈櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(kg)與上市時間x(天)的函數(shù)關(guān)系如圖1,櫻桃價格z(元/kg)與上市時間x(天)的函數(shù)關(guān)系式如圖2.

(1)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式.

(2)求當(dāng)5≤x≤20時,櫻桃的價格z與上市時間x的函數(shù)解析式.

(3)求哪一天的銷售金額達(dá)到最大,最大值是多少?

【答案】(1)y=﹣15x+300;(2)z=0.4x+6;(3)11、12天銷售額最大,最大為2200

【解析】

試題(1)分別從0≤x≤12時與12<x≤20去分析,利用待定系數(shù)法即可求得小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;
(2)當(dāng)5≤x≤20時分為兩段:當(dāng)5<x≤15時,當(dāng)15<x≤20時,設(shè)櫻桃價格與上市時間的函數(shù)解析式為z=kx+b,利用待定系數(shù)法即可求得櫻桃價格與上市時間的函數(shù)解析式;
(3)利用銷售金額=銷售量×銷售價格分別算出當(dāng)x=5、6、7、8、9、10、11、12、13的數(shù)值求得答案比較即可.

試題解析:(1)當(dāng)0≤x≤12時,

設(shè)y=kx,代入(12,120)解得k=10,

∴函數(shù)解析式為y=10x;

當(dāng)12<x≤20時,

設(shè)y=kx+b,代入(12,120)、(20,0)解得k=﹣15,b=300,

∴函數(shù)解析式為y=﹣15x+300;

(2)當(dāng)5<x≤15時,

設(shè)z=kx+b,代入(5,32)、(15,12)解得k=﹣2,b=42,

∴函數(shù)解析式為z=﹣2x+42;

當(dāng)15<x≤20時,

設(shè)z=kx+b,代入(20,14)、(15,12)解得k=0.4,b=6,

∴函數(shù)解析式為z=0.4x+6;

(3)當(dāng)x=5、6、7、8、9、10、11、12、13時,

銷售量分別為:50、60、70、80、90、100、110、120、105,

對應(yīng)價格為:32、30、28、26、24、22、20、18、16,

對應(yīng)銷售額為:1600、1800、1960、2080、2160、2200、2200、2160、1680,

所以在第11、12天銷售額最大,最大為2200

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形紙片ABCD中,∠A=70°,∠B=80°,將紙片折疊,使C,D落在AB邊上的C′,D′處,折痕為MN,則∠AMD′+∠BNC′=( ).

A. 60° B. 70° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax2+bx+c的圖像如圖所示,那么關(guān)于x的方程ax2+bx+c-4=0的根的情況是( )

A.有兩個不相等的實數(shù)根 B.有兩個異號的實數(shù)根

C.有兩個相等的實數(shù)根 D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知過原點O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點分別為P、Q,PQ交y軸于點K,拋物線經(jīng)過P、Q兩點,頂點為N(0,6),且與x軸交于A、B兩點.

(1)求點P的坐標(biāo);

(2)求拋物線解析式;

(3)在直線y=nx+m中,當(dāng)n=0,m≠0時,y=m是平行于x軸的直線,設(shè)直線y=m與拋物線相交于點C、D,當(dāng)該直線與M相切時,求點A、B、C、D圍成的多邊形的面積(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費用,提高車票價格;建議(Ⅱ)不改變車票價格,減少支出費用. 下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )

A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)

C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ADB≌△EDBBDE≌△CDE,B,EC在一條直線上.下列結(jié)論:①BD是∠ABE的平分線;②ABAC;③∠C=30°;④線段DEBDC的中線;⑤AD+BD=AC.其中正確的有( )個.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點DE分別在ACD的邊ABAC上,已知DEBC,DEDB

(1)請用直尺和圓規(guī)在圖中畫出點D和點E(保留作圖痕跡,不要求寫作法),并證明所作的線段DE是符合題目要求的;

(2)若AB=7,BC=3,請求出DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,已知直線分別與軸,軸交于,兩點,直線于點.

1)求,兩點的坐標(biāo);

2)如圖1,點E是線段OB的中點,連結(jié)AE,點F是射線OG上一點, 當(dāng),且時,求的長;

3)如圖2,若,過點作,交軸于點,此時在軸上是否存在點,使,若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案