閱讀材料:如圖1,在平面直角坐標系中,A、B兩點的坐標分別為A(x1,y1),B(x2,y2),AB中點P的坐標為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點坐標為.由勾股定理得,所以A、B兩點間的距離公式為
注:上述公式對A、B在平面直角坐標系中其它位置也成立.
解答下列問題:

如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(1)求A、B兩點的坐標及C點的坐標;
(2)連結AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.

解:(1)由,解得:。
∴A,B兩點的坐標分別為:A(,),B(,)。
∵P是A,B的中點,由中點坐標公式得P點坐標為(,3)。
又∵PC⊥x軸交拋物線于C點,將x=代入y=2x2中得y=,
∴C點坐標為(,)。
(2)證明:由兩點間距離公式得:
,
∴PC=PA=PB。
∴∠PAC=∠PCA,∠PBC=∠PCB。
∴∠PAC+∠PCB=90°,即∠ACB=90°。∴△ABC為直角三角形。
(3)如圖,過點C作CG⊥AB于G,過點A作AH⊥PC于H,
則H點的坐標為()。

。
又直線l與l′之間的距離等于點C到l的距離CG,∴直線l與l′之間的距離為。

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學到某超市調研一種進價為2元的粽子的銷售情況。請根據(jù)小麗提供的信息,解答小華和小明提出的問題。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調查,一周的銷售量y件與銷售單價x(x≥50)元/件的關系如下表:

銷售單價x(元/件)

55
60
70
75

一周的銷售量y(件)

450
400
300
250

(1)直接寫出y與x的函數(shù)關系式:   . 
(2)設一周的銷售利潤為S元,請求出S與x的函數(shù)關系式,并確定當銷售單價在什么范圍內變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災區(qū),在商家購進該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.

(1)求點A,B的坐標(直接寫出結果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標;若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(直接寫出結果);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,一個二次函數(shù)的圖象經(jīng)過點A(1,0)、B(3,0)兩點.

(1)寫出這個二次函數(shù)的對稱軸;
(2)設這個二次函數(shù)的頂點為D,與y軸交于點C,它的對稱軸與x軸交于點E,連接AD、DE和DB,當△AOC與△DEB相似時,求這個二次函數(shù)的表達式。
[提示:如果一個二次函數(shù)的圖象與x軸的交點為A,那么它的表達式可表示為:]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx﹣4經(jīng)過A(﹣8,0),B(2,0)兩點,直線x=﹣4交x軸于點C,交拋物線于點D.

(1)求該拋物線的解析式;
(2)點P在拋物線上,點E在直線x=﹣4上,若以A,O,E,P為頂點的四邊形是平行四邊形,求點P的坐標;
(3)若B,D,C三點到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使?若存在,請直接寫出d3的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數(shù)關系式.x為何值時,S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:直線過拋物線的頂點P,如圖所示.

(1)頂點P的坐標是     ;
(2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關于x軸成軸對稱,求直線y=mx+n與拋物線的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在⊙C的內接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經(jīng)過點A(4,0)與點(﹣2,6).

(1)求拋物線的解析式;
(2)直線m與⊙C相切于點A,交y軸于點D,動點P在線段OB上,從點O出發(fā)向點B運動,同時動點Q在線段DA上,從點D出發(fā)向點A運動,點P的速度為每秒1個單位長,點Q的速度為每秒2個單位長.當PQ⊥AD時,求運動時間t的值.

查看答案和解析>>

同步練習冊答案