【題目】如圖,已知直線與軸和軸分別交于點和點拋物線經(jīng)過點與直線的另一個交點為.
求的值和拋物線的解析式
點在拋物線上,軸交直線于點點在直線上,且四邊形為矩形.設(shè)點的橫坐標為矩形的周長為求與的函數(shù)關(guān)系式以及的最大值
將繞平面內(nèi)某點逆時針旋轉(zhuǎn)得到(點分別與點對應(yīng)),若的兩個頂點恰好落在拋物線上,請直接寫出點的坐標.
【答案】(1)n=2,;(2),當(dāng)時,有最大值;(3)點的坐標為或
【解析】
(1)把點B坐標代入直線解析式求出m的值,再把點C坐標代入直線解析式即可求出n的值,然后利用待定系數(shù)法求出二次函數(shù)解析式;
(2)求出點A坐標,從而得到OA、OB長度,利用勾股定理求出AB,證明解直角三角形用DE表示出EF、DF,根據(jù)矩形周長公式表示p,利用直線和拋物線解析式表示出DE的長,整理即可的p與t的函數(shù)關(guān)系式,再利用二次函數(shù)性質(zhì)求出p的最大值;
(3)將繞平面內(nèi)某點逆時針旋轉(zhuǎn),可得A1O1y軸,B1O1x軸,可得兩種情況.當(dāng)B1、O1在拋物線上時,根據(jù)B1O1=1,利用拋物線對稱性,求出O1橫坐標,進而求出A1坐標;當(dāng)在拋物線上時,表示出A1,O1坐標,由A1O1=,從而求得A1坐標
解:直線經(jīng)過點
直線的解析式為
直線經(jīng)過點
.
拋物線經(jīng)過點和點,
解得
拋物線的解析式為
直線與軸交于點
軸,
.
又,
點在拋物線上,點的橫坐標為
,且
當(dāng)時,有最大值
點的坐標為或
繞平面內(nèi)某點逆時針旋轉(zhuǎn)得到(點分別與點對應(yīng)),且的兩個頂點恰好落在拋物線上,
存在頂點落在拋物線上或頂點落在拋物線上兩種可能的情況.
點恰好都落在拋物線上時,如圖1,
則軸,軸,
點關(guān)于拋物線的對稱軸對稱
拋物線的對稱軸為直線
,
點的橫坐標為
當(dāng)時,
,
點的縱坐標為
當(dāng)點恰好都落在拋物線上時,如圖2.
設(shè)
,
點在拋物線上,
解得
綜上,點的坐標為或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著近幾年城市建設(shè)的快速發(fā)展.某市對花木的需求量逐年提高,某園林專業(yè)戶計劃投資15萬元種植花卉和樹木.根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1(萬元)與投資量x(萬元)成正比例關(guān)系,如圖①所示;種植花卉的利潤y2(萬元)與投資量x(萬元)的函數(shù)關(guān)系如圖②所示(其中OA是拋物線的一部分,A為拋物線的頂點;AB//x軸)。
(1)求出y1和y2關(guān)于投資量x的函數(shù)關(guān)系式
(2)求此專業(yè)戶種植花卉和樹木獲取的總利潤W(萬元)關(guān)于投入種植花卉的資金t(萬元)之間的函數(shù)關(guān)系式:
(3)此專業(yè)戶投入種植花卉的資金為多少萬元時,才能使獲取的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買、兩種型號的機器人搬運材料,已知型機器人比型機器人每小時多搬運材料,且型機器人搬運的材料所用的時間與型機器人搬運材料所用的時間相同.
(1)求、兩種型號的機器人每小時分別搬運多少材料?
(2)該公司計劃采購、兩種型號的機器人共臺,要求每小時搬運的材料不得少于,則至少購進型機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接AD、CD、OC.填空
①當(dāng)∠OAC的度數(shù)為 時,四邊形AOCD為菱形;
②當(dāng)OA=AE=2時,四邊形ACDE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】記:P1=﹣2,P2=(﹣2)×(﹣2),P3=(﹣2)×(﹣2)×(﹣2),…,.
(1)計算P7÷P8的值;
(2)計算2P2019+P2020的值;
(3)猜想2Pn與Pn+1的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某店代理某品牌商品的銷售.已知該品牌商品進價每件40元,日銷售y(件)與銷售價x(元/件)之間的關(guān)系如圖所示(實線),付員工的工資每人每天100元,每天還應(yīng)支付其它費用150元.
(1)求日銷售y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;
(2)該店員工人共3人,若某天收支恰好平衡(收入=支出),求當(dāng)天的銷售價是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生對“預(yù)防新型冠狀病毒”知識的掌握情況,學(xué)校組織了一次線上知識培訓(xùn),培訓(xùn)結(jié)束后進行測試,在全校2000名學(xué)生中,分別抽取了男生,女生各15份成績,整理分析過程如下,請補充完整.
(收集數(shù)據(jù))
15名男生測試成績統(tǒng)計如下:(滿分100分)78,90,99,93,92,95,94,100,90,85,86,95,75,88,90
15名女生測試成績統(tǒng)計如下:(滿分100分)77,82,83,86,90,90,92,91,93,92,92,92,92,98,100
(整理、描述數(shù)據(jù))
70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 | 95.5~100.5 | |
男生 | 1 | 1 | 1 | 5 | 5 | 2 |
女生 | 0 | 1 | 2 | 3 | 7 | 2 |
(分析數(shù)據(jù))
(1)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:
性別 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
男生 | 90 | 90 | 90 | 44.9 |
女生 | 90 | 32.8 |
在表中:________.________;
(2)若規(guī)定得分在80分以上(不含80分)為合格,請估計全校學(xué)生中“預(yù)防新型冠狀病毒”知識測試合格的學(xué)生有多少人?
(3)通過數(shù)據(jù)分析得到的結(jié)論,你認為男生和女生中誰的成績比較好?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃組織學(xué)生參加“書法”、“攝影”、“航!薄ⅰ皣濉彼膫課外興趣小組,要求每人必須參加,并且只能選擇其中一個小組,為了解學(xué)生對四個課外興趣小組的選擇情況,學(xué)校從全體學(xué)生中隨機抽取部分學(xué)生進行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(部分信息未給出),請你根據(jù)給出的信息解答下列問題:
(1)求參加這次問卷調(diào)查的學(xué)生人數(shù),并補全條形統(tǒng)計圖(畫圖后請標注相應(yīng)的數(shù)據(jù));
(2)m=_______,n=_______;
(3)若該校共有1200名學(xué)生,試估計該校選擇“圍棋”課外興趣小組的學(xué)生有多少人?
(4)分別用A、B、C、D表示“書法”、“攝影”、“航!、“圍棋”,小明和小紅從中各選取一個小組,請用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,AD=2BC,點E為AD的中點,連接BE、BD,∠ABD=90°.
(1)如圖l,求證:四邊形BCDE為菱形;
(2)如圖2,連接AC交BD于點F,連接EF,若AC平分∠BAD,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于△ABC面積的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com