【題目】如圖,ABO的直徑,F為弦AC的中點,連接OF并延長交弧AC于點D,過點DO的切線,交BA的延長線于點E

(1)求證:ACDE;

(2)連接AD、CD、OC.填空

當∠OAC的度數(shù)為   時,四邊形AOCD為菱形;

OAAE2時,四邊形ACDE的面積為   

【答案】(1)證明見解析;(2)①30°;②2.

【解析】

1)由垂徑定理,切線的性質可得FOAC,ODDE,可得ACDE;

2)①連接CDAD,OC,由題意可證ADO是等邊三角形,由等邊三角形的性質可得DF=OF,AF=FC,且ACOD,可證四邊形AOCD為菱形;

②由題意可證AFO∽△ODE,可得,即OD=2OF,DE=2AF=AC,可證四邊形ACDE是平行四邊形,由勾股定理可求DE的長,即可求四邊形ACDE的面積.

(1)F為弦AC的中點,

AFCF,且OF過圓心O

FOAC,

DE是⊙O切線

ODDE

DEAC

(2)①當∠OAC30°時,四邊形AOCD是菱形,

理由如下:如圖,連接CD,AD,OC,

∵∠OAC30°OFAC

∴∠AOF60°

AODO,∠AOF60°

∴△ADO是等邊三角形

又∵AFDO

DFFO,且AFCF,

∴四邊形AOCD是平行四邊形

又∵AOCO

∴四邊形AOCD是菱形

②如圖,連接CD,

ACDE

∴△AFO∽△EDO

OD2OF,DE2AF

AC2AF

DEAC,且DEAC

∴四邊形ACDE是平行四邊形

OAAEOD2

OFDF1,OE4

∵在RtODE中,DE

S四邊形ACDEDE×DF

故答案為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD 中,點E,O,F分別是邊AB,AC,AD的中點,連接CE、CFOE、OF

1)求證:△BCE≌△DCF

2)當ABBC滿足什么條件時,四邊形AEOF正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2bxc的圖象過點(1,0)和點(3,0),有下列說法:①bc0;②abc0;③2ab0;④4acb2.其中錯誤的是(  )

A.②④B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠B90°,AB8CB5,動點MC點開始沿CB運動,動點NB點開始沿BA運動,同時出發(fā),兩點均以1個單位/秒的速度勻速運動(當M運動到B點即同時停止),運動時間為t秒.

1AN   CM   .(用含t的代數(shù)式表示)

2)連接CN,AM交于點P

t為何值時,△CPM和△APN的面積相等?請說明理由.

t3時,試求∠APN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MNAB于點D,交BC于點E.若AC3,AB5,則DE等于(

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形的邊長為2,連接對角線AD、BE、CE,線段AD分別與BE和CE相交于點M、N,給出下列結論:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2-1,其中正確的結論是_________(把你認為正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線軸和軸分別交于點和點拋物線經(jīng)過點與直線的另一個交點為

的值和拋物線的解析式

在拋物線上,軸交直線于點在直線上,且四邊形為矩形.設點的橫坐標為矩形的周長為的函數(shù)關系式以及的最大值

繞平面內某點逆時針旋轉得到(點分別與點對應),若的兩個頂點恰好落在拋物線上,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形 ABCD 中,EBC的中點,FCD上一點,AEEF.有下列結論:

①∠BAE30°;

②射線FE是∠AFC的角平分線;

CFCD

AFABCF

其中正確結論的個數(shù)為(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線的頂點坐標為(0,1)且經(jīng)過點A1,2),直線y3x4經(jīng)過點B,n),與y軸交點為C

1)求拋物線的解析式及n的值;

2)將直線BC繞原點O逆時針旋轉45°,求旋轉后的直線的解析式;

3)如圖2將拋物線繞原點O順時針旋轉45°得到新曲線,新曲線與直線BC交于點M、N,點M在點N的上方,求點N的坐標.

查看答案和解析>>

同步練習冊答案