【題目】在數(shù)學活動課中,同學們準備了一些等腰直角三角形紙片,從每張紙片中剪出一個扇形制作圓錐玩具模型.如圖,已知△ABC是腰長為4的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)請求出所制作圓錐底面的半徑長.
【答案】
(1)解:如圖所示:扇形CEF為所求作的圖形;
(2)解:∵△ABC是等腰直角三角形,且AC=BC=4,
∴AB= ,
由(1)可知CD平分∠ACB,
∴CD⊥AB,
∴CD= ,
設圓錐底面的半徑長為r,依題意得:2πr= ,
∴r= ,
答:所制作圓錐底面的半徑長為
【解析】(1)根據(jù)題意作出圖形即可;(2根據(jù)勾股定理得到AB= ,由(1)可知CD平分∠ACB,根據(jù)等腰三角形的性質(zhì)得到CD⊥AB,根據(jù)弧長的公式即可得到結(jié)論.
【考點精析】認真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°),還要掌握扇形面積計算公式(在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2))的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的中線BD、CE相交于點O、M、N分別為OB、OC的中點.
(1)求證:MD和NE互相平分;
(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在中,的垂直平分線交于點,交于點.的垂直平分線交于點,交于點,連接、,求證:的周長;21.
如圖所示,在中,若,,的垂直平分線交于點,交于點.的垂直平分線交于點,交于點,連接、,試判斷的形狀,并證明你的結(jié)論.
如圖所示,在中,若,的垂直平分線交于點,交于點,的垂直平分線交于點,交于點,連接、,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專買店銷售A,B兩種型號的新能源汽車,上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的件價各為多少萬元;
每輛A型車和B型車的售價分別是x萬元,y萬元.
根據(jù)題意,列方程組
解這個方程組,得x= ,y=
答: .
(2)有一家公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不超過130萬元,求這次購進B型車最多幾輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡÷(-),然后再從-2<x≤2的范圍內(nèi)選取一個合適的x的整數(shù)值代入求值
【答案】4.
【解析】試題分析:先將原分式進行化解,化解過程中注意不為0的量,根據(jù)不為0的量結(jié)合x的取值范圍得出合適的x的值,將其代入化簡后的代數(shù)式中即可得出結(jié)論.
試題解析:原式===.
其中,即x≠﹣1、0、1.
又∵﹣2<x≤2且x為整數(shù),∴x=2.
將x=2代入中得: ==4.
考點:分式的化簡求值.
【題型】解答題
【結(jié)束】
21
【題目】解方程:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,A(﹣2,0),C(2,2),過C作CB⊥x軸于B.
(1)如圖1,△ABC的面積是 ;
(2)如圖1,在y軸上找一點P,使得△ABP的面積與△ABC的面積相等,請直接寫出P點坐標: ;
(3)如圖2,若過B作BD∥AC交y軸于D,則∠BAC+∠ODB的度數(shù)為 度;
(4)如圖3,BD∥AC,若AE、DE分別平分∠CAB,∠ODB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知點,,,a是的立方根,方程是關于x,y的二元一次方程,d為不等式組的最大整數(shù)解.
求點A、B、C的坐標;
如圖1,若D為y軸負半軸上的一個動點,當時,與的平分線交于M點,求的度數(shù);
如圖2,若D為y軸負半軸上的一個動點,連BD交x軸于點E,問是否存在點D,使?若存在,請求出D的縱坐標的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com