【題目】如圖,已知拋物線yax2+bx+ca0)與x軸交于點(diǎn)A、B,與y軸分別交于點(diǎn)C,其中點(diǎn)A(﹣1,0),OB=4OA,OC=2OA

1)求拋物線的解析式.

2)點(diǎn)P是線段AB一動(dòng)點(diǎn),過(guò)PPDACBCD,當(dāng)△PCD面積最大時(shí),求點(diǎn)P的坐標(biāo).

3)點(diǎn)M是位于線段BC上方的拋物線上一點(diǎn),當(dāng)∠ABC恰好等于△BCM中的某個(gè)角時(shí),直接寫出點(diǎn)M的坐標(biāo).

【答案】1y;(2P0);(3M點(diǎn)的坐標(biāo)為(3,2)或(

【解析】

1)先根據(jù)B4,0),C0,2),設(shè)拋物線的解析式為:yax+1)(x4),將點(diǎn)(02)代入求出,然后將原拋物線解析式化為一般式即可;

2)設(shè)Pm,0),則OC=2,AB=5,BP=4-m,然后根據(jù)三角形面積公式列出二次函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解即可;

3)分兩種情況求解:當(dāng)∠BCM=∠ABC時(shí)和當(dāng)∠CBM=∠ABC時(shí).

解:(1)由條件可知:B40),C0,2

設(shè)拋物線的解析式為:yax+1)(x4),將點(diǎn)(0,2)代入上式得:

a×1×(﹣4)=2解得:a=﹣ ,

∴拋物線的解析式為y;

2)如圖1,設(shè)Pm0),則OC=2,AB=5,BP=4-m

SΔABC= AB×OC=5

PD//AC∴ΔABC∽ΔPDB

SΔPCB=PB×OC=4-m

SΔPCD=SΔPCB-SΔPDB=4-m-=

∴當(dāng)m=時(shí),ΔPCM面積最大

P,0).

3)由題意知,∠BMC≠∠ABC,

當(dāng)∠BCM=∠ABC時(shí),CMAB,如圖2,

∴點(diǎn)C與點(diǎn)M關(guān)于拋物線的對(duì)稱軸對(duì)稱,

M32);

當(dāng)∠CBM=∠ABC時(shí),如圖3,過(guò)MMFBCF,過(guò)Fy軸的平行線,交x軸于G,交過(guò)M平行于x軸的直線于K,

∵∠CBM=∠ABC,∠BFM=∠BGF,

∴△MFK∽△FGB

同理可證:△MBF∽△MFK∽△FBG∽△CBO,

,

設(shè)Gn,0),則Fn,﹣n+2),

,KF=﹣n+2

Mn+1-n+4),代入拋物線解析式可解得,

n,n4(舍去).

M).

綜合以上可得M點(diǎn)的坐標(biāo)為(3,2)或().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,D的中點(diǎn),BCAD,OD分別交于點(diǎn)E,F

1)求證:ODAC

2)求證:DC2DEDA;

3)若⊙O的直徑AB10,AC6,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)為了加強(qiáng)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,鼓勵(lì)社區(qū)居民在線參與作答《2020年新型冠狀病毒肺炎的防護(hù)全國(guó)統(tǒng)一考試(全國(guó)卷)》試卷(滿分100分),社區(qū)管理員隨機(jī)從該社區(qū)抽取40名居民的答卷,并對(duì)他們的成績(jī)(單位:分)進(jìn)行整理、分析,過(guò)程如下:

收集數(shù)據(jù)

85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 70 80 95 75 100 90

整理數(shù)據(jù)(每組數(shù)據(jù)可含最低值,不含最高值)

分組(分)

頻數(shù)

頻率

6070

4

0.1

7080

a

b

8090

10

0.25

90100

c

d

100110

8

0.2

分析數(shù)據(jù)

1)填空:a   ,b   ,c   ,d   

2)補(bǔ)全頻率分布直方圖;

3)由此估計(jì)該社區(qū)居民在線答卷成績(jī)?cè)?/span>   (分)范圍內(nèi)的人數(shù)最多;

4)如果該社區(qū)共有800人參與答卷,那么可估計(jì)該社區(qū)成績(jī)?cè)?/span>90分及以上約為   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在四邊形ABCD中∠A=ABC=90°,點(diǎn)ECD的中點(diǎn),△ABD EBD關(guān)于直線BD對(duì)稱,,

1)求點(diǎn)A和點(diǎn)E之間的距離;

2)聯(lián)結(jié)ACBE于點(diǎn)F,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1) 請(qǐng)畫出ABC向左平移5個(gè)單位長(zhǎng)度后得到的ABC

(2) 請(qǐng)畫出ABC關(guān)于原點(diǎn)對(duì)稱的ABC

(3) 在軸上求作一點(diǎn)P,使PAB的周長(zhǎng)最小,請(qǐng)畫出PAB,并直接寫P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線aAB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,CD3cmBC4cm,連接BD,并過(guò)點(diǎn)CCNBD,垂足為N,直線l垂直BC,分別交BDBC于點(diǎn)P、Q.直線lAB出發(fā),以每秒1cm的速度沿BC方向勻速運(yùn)動(dòng)到CD為止;點(diǎn)M沿線段DA以每秒1cm的速度由點(diǎn)D向點(diǎn)A勻速運(yùn)動(dòng),到點(diǎn)A為止,直線1與點(diǎn)M同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).

1)線段CN   ;

2)連接PMQN,當(dāng)四邊形MPQN為平行四邊形時(shí),求t的值;

3)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí)PMN的面積取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,內(nèi)接于分別是所對(duì)弧的中點(diǎn),弦分別交于點(diǎn),連結(jié)

1)求證:是等邊三角形.

2)若

①如圖2,當(dāng)的直徑時(shí),求的長(zhǎng).

②當(dāng)的面積分成了的兩部分時(shí),求的長(zhǎng).

3)連結(jié)于點(diǎn),若:則的值為_______ (請(qǐng)直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校響應(yīng)國(guó)家號(hào)召,鼓勵(lì)學(xué)生積極參與體育鍛煉.為了解學(xué)生一星期參與體育鍛煉的時(shí)間情況,從全校2000名學(xué)生中,隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,按參與體育鍛煉的時(shí)間t(單位:小時(shí)),將學(xué)生分成五類:A類(0≤t≤2),B類(2t≤4),C類(4t≤6),D類(6t≤8),E類(t8).繪制成尚不完整的條形統(tǒng)計(jì)圖如圖.根據(jù)以上信息,解答下列問題:

1)樣本中E類學(xué)生有   人,補(bǔ)全條形統(tǒng)計(jì)圖;

2)估計(jì)全校的D類學(xué)生有   人;

3)從該樣本參與體育鍛煉時(shí)間在0≤t≤4的學(xué)生中任選2人,求這2人參與體育鍛煉時(shí)間都在2t≤4中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案