【題目】小左同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿的高度,如圖,她在某一時(shí)刻立一長(zhǎng)度為1米的標(biāo)桿,測(cè)得其影長(zhǎng)為米,同時(shí)旗桿投影的一部分在地上,另一部分在某一建筑物的墻上,測(cè)得旗桿與建筑物的距離為10米,旗桿在墻上的影高為2米,請(qǐng)幫小左同學(xué)算出學(xué)校旗桿的高度.
【答案】14.5米
【解析】【試題分析】設(shè)墻上的影高2米落在地面上時(shí)的長(zhǎng)度為x米,旗桿的高度為h米,將墻上2米的影子投射到地面上,則
某一時(shí)刻測(cè)得長(zhǎng)為1米的竹竿影長(zhǎng)為米,墻上的影高為2米,
,解得米,此時(shí)大樹(shù)在地面上的影長(zhǎng)為: 米,
,解得米.從而得解.
【試題解析】
設(shè)墻上的影高2米落在地面上時(shí)的長(zhǎng)度為x米,旗桿的高度為h米,
某一時(shí)刻測(cè)得長(zhǎng)為1米的竹竿影長(zhǎng)為米,墻上的影高為2米,
,解得米,
樹(shù)的影長(zhǎng)為: 米,
,解得米.
答:學(xué)校旗桿的高度米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,王老師站在湖邊度假村的景點(diǎn)A處,觀察到一只水鳥(niǎo)由岸邊D處飛向湖中小島C處,點(diǎn)A到DC所在水平面的距離AB是15米,觀測(cè)水鳥(niǎo)在點(diǎn)D和點(diǎn)C處時(shí)的俯角分別為53°和11°,求C、D兩點(diǎn)之間距離.(精確到0.1.參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin11°≈0.19,cos11°≈0.98,tan11°≈0.19)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且.連接PB,試探究PA,PB,PC滿(mǎn)足的等量關(guān)系.
圖1 圖2
(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到,連接,如圖1所示.
由≌可以證得是等邊三角形,再由可得∠APC的大小為 度,進(jìn)而得到是直角三角形,這樣可以得到PA,PB,PC滿(mǎn)足的等量關(guān)系為 ;
(2)如圖2,當(dāng)α=120°時(shí),請(qǐng)參考(1)中的方法,探究PA,PB,PC滿(mǎn)足的等量關(guān)系,并給出證明;
(3)PA,PB,PC滿(mǎn)足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線(xiàn)分別交AD于點(diǎn)E,F,BE,CF相交于點(diǎn)G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOC=15°,OC平分∠AOB,P為OC上一點(diǎn),PD∥OA交OB于點(diǎn)D,PE ⊥OA于E,OD=4cm,則PE=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,把R△ABC繞著B點(diǎn)逆時(shí)針旋轉(zhuǎn),得到Rt△DBE,點(diǎn)E在AB上 .
(1)若∠BDA=70°,求∠BAC的度數(shù);
(2)若BC=8,AC=6,求△ABD中AD邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),B(4,0),C(4,3)三點(diǎn).
(1)建立平面直角坐標(biāo)系并描出A、B、C三點(diǎn)
(2)求△ABC的面積;
(3)如果在第二象限內(nèi)有一點(diǎn)P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿(mǎn)足條件的P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD
(1) 如圖1,若AB為邊在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度數(shù)
(2) 如圖2,∠ABC=α,∠ACD=β,BC=6,BD=8
① 若α=30°,β=60°,AB的長(zhǎng)為
② 若改變?chǔ)、β的大小,但α+β?0°,求△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、c 是 RtABC和 RtBED 的邊長(zhǎng),已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱(chēng)為“勾系一元二次方程”.
請(qǐng)解決下列問(wèn)題:
(1)寫(xiě)出一個(gè)“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實(shí)數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個(gè)根,且四邊形 ACDE 的周長(zhǎng)是6,求ABC 的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com