(本題滿(mǎn)分10分)
已知:如圖,矩形DEFG的一邊DE在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上,AH是邊BC上的高,AHGF相交于點(diǎn)K,已知BC=12,AH=6,EFGF=1∶2,求矩形DEFG的周長(zhǎng).
解:設(shè)EF=x,則GF=2x
GFBCAHBC,∴AKGF
GFBC,∴△AGF∽△ABC.………………………………………(2分)
.……………………………………………………………(2分)
AH=6,BC=12,∴.………………………………………(2分)
解得x=3.…………………………………………………………………(2分)
∴矩形DEFG的周長(zhǎng)為18.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB•AC=AD•AE,且∠1=∠2,求證:△ABC∽△AED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB =6,AD =11.直角尺的直角頂點(diǎn)PAD上滑動(dòng)時(shí)(點(diǎn)PA,D不重合),一直角邊始終經(jīng)過(guò)點(diǎn)C,另一直角邊與AB交于點(diǎn)E
(1)△CDP與△PAE相似嗎?如果相似,請(qǐng)寫(xiě)出證明過(guò)程;
(2)當(dāng)∠PCD =30°時(shí),求AE的長(zhǎng);
(3)是否存在這樣的點(diǎn)P,使△CDP的周長(zhǎng)等于△PAE周長(zhǎng)的2倍?若存在,求DP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
如圖,的頂點(diǎn)A、B在二次函數(shù)的圖像上,又點(diǎn)A、B[來(lái)分別在軸和軸上,ABO

小題1:(1)求此二次函數(shù)的解析式;(4分)
小題2:

 

 
(2)過(guò)點(diǎn)交上述函數(shù)圖像于點(diǎn),

點(diǎn)在上述函數(shù)圖像上,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).(8分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

2011年11月“天宮一號(hào)”和“神州八號(hào)”的成功對(duì)接是我國(guó)航天事業(yè)又一巨大成就.在一比例尺是的衛(wèi)星地圖上,測(cè)得上海和南京的距離大約是厘米.那么上海和南京的實(shí)際距離大約是     ▲     千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果△ABC∽△DEF,且△ABC的三邊長(zhǎng)分別為3、5、6,△DEF的最短邊長(zhǎng)為9,那么△DEF的周長(zhǎng)等于
A.14;B.C.21;D.42.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


小題1:如圖1,正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是AD邊的中點(diǎn),將△ABE沿BE翻折得到△FBE,延長(zhǎng)BF交CD邊于點(diǎn)G,則FG=DG,求出此時(shí)DG的值;

小題2:如圖2,矩形ABCD中,AD>AB,AB=1,點(diǎn)E是AD邊的中點(diǎn),同樣將△ABE沿BE翻折得到△FBE,延長(zhǎng)BF交CD邊于點(diǎn)G.

①證明:FG=DG;
②若點(diǎn)G恰是CD邊的中點(diǎn),求AD的值;
③若△ABE與△BCG相似,求AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知線段a,b,c,求作線段下列作作作法中正確的是(    )

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在△ABC中,∠ACB=90°,AC=3,BC=4,將△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn)30°,得到△ABC.聯(lián)結(jié)AA、BB,設(shè)△ACA′和△BCB′的面積分別為S△ACA′ S△BCB′

小題1:(1)直接寫(xiě)出S△ACA′ S△BCB′ 的值                  ;
小題2:(2)如圖2,當(dāng)旋轉(zhuǎn)角為(0°<<180°)時(shí),S△ACA′ S△BCB′ 的比值是否發(fā)生變化,若不變請(qǐng)證明;若改變,寫(xiě)出變化后的比值(可用含的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案