【題目】在等邊△ABC外作射線AD,使得AD和AC在直線AB的兩側(cè),∠BAD=α(0°<α<180°),點B關于直線AD的對稱點為P,連接PB,PC.
(1)依題意補全圖1;
(2)在圖1中,求△BPC的度數(shù);
(3)直接寫出使得△PBC是等腰三角形的α的值.
【答案】(1)詳見解析;(2)∠BPC=30°;(3)α的值為:30°,75°,120°,165°.
【解析】
(1)根據(jù)題意畫出圖形即可;
(2)點B關于直線AD的對稱點為P,得到AP=AB,根據(jù)圓周角定理即可解決問題;
(3)根據(jù)等腰三角形的性質(zhì)分四種情形畫出圖形分別求解即可.
(1)圖形如圖所示:
(2)點B關于直線AD的對稱點為P,
∴AP=AB,
∴∠PAD=∠BAD,
∵△ABC是等邊三角形,
∴∠BAC=60°,AB=AC,
∴AP=AB=AC,
∴P,B,C在以A為圓心AP為半徑的圓上,
∴∠BPC=∠BAC=30°;
(3)①如圖2-1中,當BP=BC時,α=∠BAD=30°.
②如圖2-2中,當PB=PC時,α=∠BAD=75°.
③如圖2-3中,當CP=BC時,α=∠BAD=120°
④如圖2-4中,當BP=PC時,α=∠BAD=165°
綜上所述α的值為:30°,75°,120°,165°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點,E是AC邊上一點.若AE=2,當EF+CF取得最小值時,∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=50°,∠C=70°,求∠DAC及∠BOA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸,y軸分別交于B,C兩點,拋物線y=ax2+bx+c過A(1,0),B,C三點.
(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方圖形上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值.
(3)在(2)的條件下,當MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是以BN為腰的等腰三角形?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是一個工件的平面圖,它要求AD和BC這兩邊的夾角應等于30°.甲、乙、丙三個工人在檢驗工件是否合格時,發(fā)生了以下爭論:
甲:要檢驗工件是否合格,應延長AD和BC,設交點為O,然后檢驗∠O是否等于30°.
乙:這樣太麻煩了,我看只需測量出∠A和∠B的度數(shù)就行了.
丙:量出∠C和∠D的度數(shù)也可以檢驗AD和BC的夾角是否等于30°.
請你用所學過的知識,說明乙、丙兩人的方法是否正確.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某物流公司的快遞車和貨車同時從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達乙地后缷完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時,兩車之間的距離y(千米)與貨車行駛時間x(小時)之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個結(jié)論: ①快遞車從甲地到乙地的速度為100千米/時;
②甲、乙兩地之間的距離為120千米;
③圖中點B的坐標為(3 ,75);
④快遞車從乙地返回時的速度為90千米/時,
以上4個結(jié)論正確的是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某校為了創(chuàng)建書香校園,去年購進一批圖書.經(jīng)了解,科普書的單價比文學書的單價多4元,用12000元購進的科普書與用8000元購進的文學書本數(shù)相等.
(1)文學書和科普書的單價各多少錢?
(2)今年文學書和科普書的單價和去年相比保持不變,該校打算用10000元再購進一批文學書和科普書,問購進文學書550本后至多還能購進多少本科普書?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個反比例函數(shù)y= (k>1)和y= 在第一象限內(nèi)的圖象如圖所示,點P在y= 的圖象上,PC⊥x軸于點C,交y= 的圖象于點A,PD⊥y軸于點D,交y= 的圖象于點B,BE⊥x軸于點E,當點P在y= 圖象上運動時,以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com