【題目】問題情境:課堂上,同學們研究幾何變量之間的函數(shù)關系問題:如圖,菱形ABCD的對角線AC,BD相交于點O,AC=4,BD=2.點PAC上的一個動點,過點PMNAC,垂足為點P(點M在邊AD、DC上,點N在邊AB、BC上).設AP的長為x(0≤x≤4),AMN的面積為y.

建立模型:(1)yx的函數(shù)關系式為:

解決問題:(2)為進一步研究yx變化的規(guī)律,小明想畫出此函數(shù)的圖象.請你補充列表,并在如圖的坐標系中畫出此函數(shù)的圖象:

x

0

1

2

3

4

y

0

   

   

   

0

(3)觀察所畫的圖象,寫出該函數(shù)的兩條性質(zhì):   

【答案】(1) ①y=;;(2)見解析;(3)見解析

【解析】

1)根據(jù)線段相似的關系得出函數(shù)關系式(2)代入中函數(shù)表達式即可填表(3)畫圖像,分析即可.

(1)設AP=x

0≤x≤2

∵MN∥BD

∴△APM∽△AOD

∴MP=

∵AC垂直平分MN

∴PN=PM=x

∴MN=x

∴y=APMN=

2<x≤4時,P在線段OC上,

∴CP=4﹣x

∴△CPM∽△COD

∴PM=

∴MN=2PM=4﹣x

∴y==﹣

∴y=

(2)由(1)

x=1時,y=

x=2時,y=2

x=3時,y=

(3)根據(jù)(1)畫出函數(shù)圖象示意圖可知

1、當0≤x≤2時,yx的增大而增大

2、當2<x≤4時,yx的增大而減小

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC

⑴求∠ECD的度數(shù);

⑵若CE=5,求CB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點CD為圓心,大于CD的長為半徑畫弧,兩弧在AOB內(nèi)部交于點E,過點E作射線OE,連CD.則下列說法錯誤的是

A.射線OEAOB的平分線

BCOD是等腰三角形

CCD兩點關于OE所在直線對稱

DO、E兩點關于CD所在直線對稱

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點M為直線AB上一動點,△PAB,△PMN都是等邊三角形,連接BN,

(1)M點如圖1的位置時,如果AM=5,BN的長;

(2)M點在如圖2位置時,線段AB、BM、BN三者之間的數(shù)量關系__________________;

(3)M點在如圖3位置時,當BM=AB時,證明:MNAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】物華小區(qū)停車場去年收費標準如下:中型汽車的停車費為600/輛,小型汽車的停車費為400/輛,停滿車輛時能收停車費23000元,今年收費標準上調(diào)為:中型汽車的停車費為1000/輛,小型汽車的停車費為600/輛,若該小區(qū)停車場容納的車輛數(shù)沒有變化,今年比去年多收取停車費13000元.

1)該停車場去年能停中、小型汽車各多少輛?

2)今年該小區(qū)因建筑需要縮小了停車場的面積,停車總數(shù)減少了11輛,設該停車場今年能停中型汽車輛,小型汽車有輛,停車場收取的總停車費為元,請求出關于的函數(shù)表達式;

3)在(2)的條件下,若今年該停車場停滿車輛時小型汽車的數(shù)量不超過中型汽車的2倍,則今年該停車場最少能收取的停車費共多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AC=6,BC=8.

1)用直尺和圓規(guī)作∠A的平分線,交BC于點D;(要求:不寫作法,保留作圖痕跡)

2)求SADC: S△ADB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,的中點,連接,且平分,延長的延長線于點.

1)求證:;

2)求證:;

3)求證:的平分線;

4)探究的面積間的數(shù)量關系,并寫出探究過程.

查看答案和解析>>

同步練習冊答案