【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對(duì)應(yīng)值如表:

x

﹣5

﹣4

﹣3

﹣2

﹣1

0

y

4

0

﹣2

﹣2

0

4

下列說法正確的是(
A.拋物線的開口向下
B.當(dāng)x>﹣3時(shí),y隨x的增大而增大
C.二次函數(shù)的最小值是﹣2
D.拋物線的對(duì)稱軸是x=﹣

【答案】D
【解析】解:將點(diǎn)(﹣4,0)、(﹣1,0)、(0,4)代入到二次函數(shù)y=ax2+bx+c中, 得: ,解得: ,
∴二次函數(shù)的解析式為y=x2+5x+4.
A、a=1>0,拋物線開口向上,A不正確;
B、﹣ =﹣ ,當(dāng)x≥﹣ 時(shí),y隨x的增大而增大,B不正確;
C、y=x2+5x+4= ,二次函數(shù)的最小值是﹣ ,C不正確;
D、﹣ =﹣ ,拋物線的對(duì)稱軸是x=﹣ ,D正確.
故選D.
選出3點(diǎn)的坐標(biāo),利用待定系數(shù)法求出函數(shù)的解析式,再根據(jù)二次函數(shù)的性質(zhì)逐項(xiàng)分析四個(gè)選項(xiàng)即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論:w

①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;

③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣;

④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;

其中結(jié)論正確個(gè)數(shù)有( )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按下列程序計(jì)算,把答案填寫在表格內(nèi),然后觀察有什么規(guī)律,想一想:為什么會(huì)有這個(gè)規(guī)律?

(1)填寫表內(nèi)空格:

輸入

-3

-2

-1

0

輸出答案

9

(2)發(fā)現(xiàn)的規(guī)律是:輸入數(shù)據(jù)x,則輸出的答案是__________;

(3)為什么會(huì)有這個(gè)規(guī)律?請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某月的月歷,用帶陰影的方框任意框九個(gè)數(shù)。

1)圖中帶陰影的方框中的9個(gè)數(shù)之和與方框正中心的數(shù)有什么關(guān)系?請(qǐng)說明你的理由?

2)若這9個(gè)數(shù)之和是81,你能說出這9個(gè)日期嗎?只要回答能或不能,且說明為什么?

3)這9個(gè)數(shù)之和可能會(huì)是100嗎?如果可能,請(qǐng)計(jì)算出這9個(gè)日期,如果不可能,請(qǐng)說明為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC=5,AB的垂直平分線DE分別交AB,ACE,D.

(1)若△BCD的周長為8,求BC的長;

(2)BC=4,求△BCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)4x+3=2x+7

(2)﹣2(x﹣1)=4

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L1∥L2 , 圓O與L1和L2分別相切于點(diǎn)A和點(diǎn)B,點(diǎn)M和點(diǎn)N分別是L1和L2上的動(dòng)點(diǎn),MN沿L1和L2平移,圓O的半徑為1,∠1=60°,當(dāng)MN與圓相切時(shí),AM的長度等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L:y=-x+2x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動(dòng)點(diǎn)MA點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)△COM的面積SM的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(3)當(dāng)t為何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);

查看答案和解析>>

同步練習(xí)冊(cè)答案