【題目】如圖,在矩形ABCD中,對角線AC、BD交于點O,BE平分∠ABC交AC于點F,交AD于點E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
【答案】見解析
【解析】試題分析:(1)根據(jù)矩形的得出OB=OA,∠ABC=∠BAD=90°,求出∠EBA=45°,可得AB=AE;求出∠OBA=60°,得出等邊△OBA,推出BA=OA,從而AO=AE;
(2)由△OBA是等邊三角形得∠BAO=60°,從而∠OAE=30°,然后根據(jù)等腰三角形的性質(zhì)可求出∠AEO的度數(shù),進而可求出∠FEO的度數(shù).
解:∵四邊形ABCD是矩形,
∴∠ABC=∠BAD=90°,OB=OA,
∵BE平分∠ABC,
∴∠ABE=45°,
∵∠OBF=15°,
∴∠OBA=60°,
∵OB=OA,
∴△BOA是等邊三角形,
∴∠OAB=60°,BA=OA,
∴∠OEF=∠BEA=180°-∠OAB-∠EBA=180°-45°-60°=75°,
∵∠BAF=90°,∠FBA=45°,
∴∠FBA=45°=∠BFA,
∴BA=AE,
∴AO=AE;
(2)∵∠BAD=90°,∠OAB=60°,
∴∠OAF=90°-60°=30°,
∴∠AEO=×(180°-30°)=75°,
∴∠AOF=∠OEF=75°,
∴∠FEO=75°-45°=30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)棱錐的頂點數(shù)為V,面數(shù)為F,棱數(shù)為E.
(1)觀察與發(fā)現(xiàn):三棱錐中,V3= ,F(xiàn)3= ,E3= ;
五棱錐中,V5= ,F(xiàn)5= ,E5= ;
(2)猜想:①十棱錐中,V10= ,F(xiàn)10= ,E10= ;
②n棱錐中,Vn= ,F(xiàn)n= ,En= ;(用含有n的式子表示)
(3)探究:①棱錐的頂點數(shù)(V)與面數(shù)(F)之間的等量關(guān)系: ;
②棱錐的頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間的等量關(guān)系:E= ;
(4)拓展:棱柱的頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間是否也存在某種等量關(guān)系?若存在,試寫出相應(yīng)的等式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是平面上的兩定點,在平面上找一點C,使△ABC為等腰直角三角形,且點C為直角頂點,這樣的點C有幾個?請用尺規(guī)作圖確定點C的位置,保留作圖跡并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,E是CD上一點,DE:EC=1:3,連AE,BE,BD且AE,BD交于F,則S△DEF:S△EBF:S△ABF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,E為AB上一點,將△BCE沿CE翻折至△FCE,EF與AD相交于點G,且AG=FG,則線段AE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù) 的圖象交于二四象限內(nèi)的A、B 兩點,與x軸交于C點,點B的坐標(biāo)為(6,n),線段OA=5,E為x軸負半軸上一點,且sin∠AOE= .
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵遞員騎摩托車從郵局出發(fā),先向南騎行2km到達A村,繼續(xù)向南騎行3km到達B 村,然后向北騎行9km到C村,最后回到郵局.
(1)以郵局為原點,以向北方向為正方向,用1個單位長度表示1km,請你在數(shù)軸上表示出A、B、C三個村莊的位置;
(2)C村離A村有多遠?
(3)若摩托車每100km耗油3升,這趟路共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速.設(shè)運動的時間為t秒.
問:(1)動點P從點A運動至C點需要多少時間?
(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com