如圖:AB是⊙O的直徑,以O(shè)A為直徑的⊙O1與⊙O的弦AC相交于D,DE⊥OC,垂足為E.

(1)求證:AD=DC;

(2)求證:DE是⊙O1的切線;

(3)如果OE=EC,請(qǐng)判斷四邊形O1OED是什么四邊形,并證明你的結(jié)論.

 

【答案】

(1)證明見(jiàn)試題解析;(2)證明見(jiàn)試題解析;(3)正方形,證明見(jiàn)試題解析.

【解析】

試題分析:(1)連OD可得OD⊥AC,又有OA=OC,所以第一問(wèn)可求解;

(2)證明O1D⊥DE即可;

(3)如果OE=EC,又D為AC的中點(diǎn),所以四條邊相等,再根據(jù)角之間的關(guān)系,即可得出其形狀.

試題解析:(1)連接OD,∵AO為圓O1的直徑,則∠ADO=90°.∵AC為⊙O的弦,OD為弦心距,∴AD=DC.

(2)∵D為AC的中點(diǎn),O1為AO的中點(diǎn),∴O1D∥OC.又DE⊥OC,∴DE⊥O1D,∴DE與⊙O1相切;

(3)如果OE=EC,又D為AC的中點(diǎn),∴DE∥O1O,又O1D∥OE,∴四邊形O1OED為平行四邊形.又∠DEO=90°,O1O=O1D,∴四邊形O1OED為正方形.

考點(diǎn):1.切線的判定;2.正方形的判定.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長(zhǎng)線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問(wèn)題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長(zhǎng)度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測(cè)得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過(guò)愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過(guò)愚溪橋?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案