已知:當m>n時,代數(shù)式(m2-n2+3)2和|m2+n2-5|的值互為相反數(shù),求關(guān)于x的方程m|1-x|=n的解.
分析:代數(shù)式(m2-n2+3)2和|m2+n2-5|的值互為相反數(shù),根據(jù)偶次方與絕對值都是非負數(shù),幾個非負數(shù)的和是0,則每個數(shù)都是0,即可得到一個關(guān)于m,n的方程組,從而求得m,n的值,得到所求的方程,解方程即可.
解答:解:根據(jù)題意得(m2-n2+3)2+|m2+n2-5|=0
m2-n2=-3
m2+n2=5

解得
m2=1
n2=4

∴m=±1,n=±2
又∵m>n
m=1
n=-2
m=-1
n=-2

m=1
n=-2
代入m|1-x|=n得|1-x|=-2無解
m=-1
n=-2
代入n|1-x|=n得-|1-x|=-21-x=±2
∴x=-1或3.
點評:本題考查了非負數(shù)的性質(zhì),以及二元二次方程組的解法,絕對值方程的解法,正確解方程組是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:不妨設這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因為a為正整數(shù),所以a=1或2,
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仔細閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知y=y1+y2,y1與x成正比例,y2與x成反比例,并且當x=1時y=4;當x=3時,y=5.求當x=4時,y的值.
解:∵y1與x成正比例,y2與x成反比例,可以設y1=kx,y2=
k
x

又∵y=y1+y2,
∴y=kx+
k
x

把x=1,y=4代入上式,解得k=2.
∴y=2x+
2
x

∴當x=4時,y=2×4+
2
4
=8
1
2

閱讀上述解答過程,其過程是否正確?若不正確,請說明理由,并給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀理解
九年級一班數(shù)學學習興趣小組在解決下列問題中,發(fā)現(xiàn)該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數(shù)”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數(shù)”解決問題的方法,然后再應用此方法解決后續(xù)問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數(shù)的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教網(wǎng)
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)一元二次方程根的定義,解答下列問題.
一個三角形兩邊長分別為3cm和7cm,第三邊長為a cm,且整數(shù)a滿足a2-10a+21=0,求三角形的周長.
解:由已知可得4<a<10,則a可取5,6,7,8,9.(第一步)
當a=5時,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周長是3+7+7=17(cm).
上述過程中,第一步是根據(jù)
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
,第二步應用了
分類討論
分類討論
數(shù)學思想,確定a的值的大小是根據(jù)
方程根的定義
方程根的定義

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:設這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數(shù),所以a=1或2.
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數(shù)的和與積相等,求這三個正整數(shù).

查看答案和解析>>

同步練習冊答案