【題目】如圖,已知是的切線,是的直徑,連接交于點(diǎn),在上截取,在中,連接,交于點(diǎn).
(1)求證:;
(2)連接,,當(dāng) 時(shí),四邊形是菱形.
【答案】(1)見解析;(2)30°
【解析】
(1)連接AF,根據(jù)直徑所對的圓周角是直角可得∠AFC=90°,從而得出∠FAC+∠ACF=90°,然后根據(jù)三線合一可得∠BAC=2∠FAC,然后根據(jù)切線的性質(zhì)可知∠BCE+∠ACF=90°,從而證出結(jié)論;
(2)連接OF,根據(jù)題意,易證當(dāng)△OCF為等邊三角形時(shí),此時(shí)OC= FC=FD= OD,即四邊形是菱形,從而求出∠OCF=60°,然后根據(jù)直角三角形的性質(zhì)即可求出結(jié)論.
解:(1)連接AF
∵AC為直徑
∴∠AFC=90°
∴∠FAC+∠ACF=90°
∵
∴∠BAC=2∠FAC
∵是的切線,
∴∠ACB=90°
∴∠BCE+∠ACF=90°
∴∠FAC=∠BCE
∴∠BAC=2∠BCE
(2)連接OF
∵∠CAF=∠EAF
∴FC=FD
∵OC=OD=OF,
∴當(dāng)△OCF為等邊三角形時(shí),此時(shí)OC= FC=FD= OD,即四邊形是菱形
∴∠OCF=60°
∴∠CAF=90°-∠OCF=30°
∴∠CAE=2∠CAF=60°
∴∠B=90°-∠CAE=30°
即當(dāng)30°時(shí),四邊形是菱形
故答案為:30°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于2020年新型冠狀病毒的襲擊,不得不推遲開學(xué),但停課不停學(xué),各地都開展了網(wǎng)課.某中學(xué)為了解學(xué)生上網(wǎng)課情況,開學(xué)后從全校七年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了數(shù)學(xué)科目的測試(把測試結(jié)果分為四個(gè)等級:A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格),并將測試記錄繪成如下兩幅完全不同的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生數(shù)是多少?
(2)求圖1中A級扇形的圓心角∠α的度數(shù),并把圖2中的條形統(tǒng)計(jì)圖補(bǔ)充完成;
(3)該中學(xué)七年級共有1200名學(xué)生,如果全部參加這次數(shù)學(xué)科目測試,請估計(jì)不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)過市場調(diào)查,發(fā)現(xiàn)某種運(yùn)動(dòng)服的銷量與售價(jià)是一次函數(shù)關(guān)系,具體信息如下表:
售價(jià)(元/件) | 200 | 210 | 220 | 230 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件150元.
(1)售價(jià)為元,月銷量為件;
①求關(guān)于的函數(shù)關(guān)系式;
②若銷售該運(yùn)動(dòng)服的月利潤為元,求關(guān)于的函數(shù)關(guān)系式,并求月利潤最大時(shí)的售價(jià);
(2)由于運(yùn)動(dòng)服進(jìn)價(jià)降低了元,商家決定回饋顧客,打折銷售,這時(shí)月銷量與調(diào)整后的售價(jià)仍滿足(1)中函數(shù)關(guān)系式.結(jié)果發(fā)現(xiàn),此時(shí)月利潤最大時(shí)的售價(jià)比調(diào)整前月利潤最大時(shí)的售價(jià)低15元,則的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是AB延長線上一點(diǎn),連接CP.
(1)如圖1,若∠PCB=∠A.
①求證:直線PC是⊙O的切線;
②若CP=CA,OA=2,求CP的長;
(2)如圖2,若點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,MNMC=9,求BM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店準(zhǔn)備購進(jìn)A、B兩種品牌的文具袋進(jìn)行銷售,若購進(jìn)A品牌文具袋和B品牌文具袋各5個(gè)共花費(fèi)120元,購進(jìn)A品牌文具袋3個(gè)和B品牌文具袋4個(gè)共花費(fèi)88元.
(1)求購進(jìn)A品牌文具袋和B品牌文具袋的單價(jià);
(2)若該文具店購進(jìn)了A,B兩種品牌的文具袋共100個(gè),其中A品牌文具袋售價(jià)為12元,B品牌文具袋售價(jià)為23元,設(shè)購進(jìn)A品牌文具袋x個(gè),獲得總利潤為w元.
①求w關(guān)于x的函數(shù)關(guān)系式;
②要使銷售文具袋的利潤最大,且所獲利潤不低于進(jìn)貨價(jià)格的45%,請你幫該文具店設(shè)計(jì)一個(gè)進(jìn)貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線上時(shí),求m的值;
(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(1,2),以點(diǎn)O為圓心,以OA1長為半徑畫弧,交直線于點(diǎn)B1.過B1點(diǎn)作B1A2∥y軸,交直線y=2x于點(diǎn)A2,以O為圓心,以OA2長為半徑畫弧,交直線于點(diǎn)B2;過點(diǎn)B2作B2A3∥y軸,交直線y=2x于點(diǎn)A3,以點(diǎn)O為圓心,以OA3長為半徑畫弧,交直線于點(diǎn)B3;過B3點(diǎn)作B3A4∥y軸,交直線y=2x于點(diǎn)A4,以點(diǎn)O為圓心,以OA4長為半徑畫弧,交直線于點(diǎn)B4,…按照如此規(guī)律進(jìn)行下去,點(diǎn)B2020的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接BC
(1)點(diǎn)G是直線BC上方拋物線上一動(dòng)點(diǎn)(不與B、C重合),過點(diǎn)G作y軸的平行線交直線BC于點(diǎn)E,作GF⊥BC于點(diǎn)F,點(diǎn)M、N是線段BC上兩個(gè)動(dòng)點(diǎn),且MN=EF,連接DM、GN.當(dāng)△GEF的周長最大時(shí),求DM+MN+NG的最小值;
(2)如圖2,連接BD,點(diǎn)P是線段BD的中點(diǎn),點(diǎn)Q是線段BC上一動(dòng)點(diǎn),連接DQ,將△DPQ沿PQ翻折,且線段D′P的中點(diǎn)恰好落在線段BQ上,將△AOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到△A′OC′,點(diǎn)T為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)Q、A′、C′、T為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABE中,∠B=90°,AB=BE,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到△AHD,過D作DC⊥BE交BE的延長線于點(diǎn)C,連接BH并延長交DC于點(diǎn)F,連接DE交BF于點(diǎn)O.下列結(jié)論:①DE平分∠HDC;②DO=OE;③H是BF的中點(diǎn);④BC-CF=2CE;⑤CD=HF,其中正確的有( )
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com