(2012•中山一模)如圖,在△ABC中,∠A=70°,AB=AC,CD平分∠ACB.求∠ADC的度數(shù).
分析:由AB=AC,且頂角∠A的度數(shù),利用等邊對等角得到兩底角相等,且利用內(nèi)角和定理求出底角的度數(shù),再由CD為底角的平分線,求出∠DCB的度數(shù),由∠ADC為三角形BCD的外角,利用外角性質(zhì)即可求出∠ADC的度數(shù).
解答:解:∵在△ABC中,∠A=70°,AB=AC,
∴∠B=∠ACB=
180°-70°
2
=55°,
又∵CD平分∠ACB,
∴∠DCB=∠ACD=27.5°,
∵∠ADC為△BCD的外角,
∴∠ADC=∠B+∠DCB=82.5°.
點(diǎn)評:此題考查了等腰三角形的性質(zhì),三角形的外角性質(zhì),利用了方程的思想,其中等腰三角形的性質(zhì)即為等邊對等角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)2011年9月,我國“雜交水稻之父”袁隆平主持研究的“Y兩優(yōu)2號”百畝超級雜交稻試驗田,在湖南省邵陽市隆回縣成熟收割,經(jīng)專家組測產(chǎn)驗收,平均畝產(chǎn)達(dá)到926.6公斤.這百畝試驗田總產(chǎn)量用科學(xué)記數(shù)法表示是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),AC是⊙O的直徑,∠BAC=20°,求∠P的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)計算:2sin60°+|1-
1
3
|+(-
1
2
)-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山一模)如圖,△ABC中,A(-2,3),B(-3,1),C(-1,2).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A2B2C2;
(3)△A1B1C1與△A2B2C2關(guān)于
x軸
x軸
成軸對稱.

查看答案和解析>>

同步練習(xí)冊答案