如圖1,若AB∥CD,則有∠B+∠D=∠E.
(1)將點(diǎn)E移至圖2的位置時(shí),則∠B、∠D,∠E有什么關(guān)系?請(qǐng)證明你的結(jié)論.
(2)在圖3中,∠E+∠G與∠B+∠F+∠D之間有什么關(guān)系?請(qǐng)證明你的結(jié)論.
(3)在圖4中,若AB∥CD,又得到什么結(jié)論?(直接寫(xiě)出你的結(jié)論).
分析:(1)過(guò)點(diǎn)E作EF∥AB,由AB∥CD,可得AB∥EF∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可求得∠B+∠BED+∠D=360°;
(2)過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,過(guò)點(diǎn)G作GH∥AB,由AB∥CD,可得AB∥EM∥FN∥GH∥CD,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得∠E+∠G=∠B+∠F+∠D;
(3)由圖1與圖2可得規(guī)律:開(kāi)口朝左的所有角度之和與開(kāi)口朝右的所有角度之和相等,即可得∠E1+∠E2+…+∠En=∠B+∠F1+∠F2+…+∠Fn+∠D.
解答:解:(1)∠B+∠D+∠E=360°.理由如下:
過(guò)點(diǎn)E作EF∥AB,
又∵AB∥CD,
∴AB∥EF∥CD,
∴∠B+∠BEF=180°,∠FED+∠D=180°,
∴∠B+∠BED+∠D=360°,
即∠B+∠D+∠E=360°;

(2)∠E+∠G=∠B+∠F+∠D.理由如下:
過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,過(guò)點(diǎn)G作GH∥AB,
∵AB∥CD,
∴AB∥EM∥FN∥GH∥CD,
∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,
∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,
即∠E+∠G=∠B+∠F+∠D.

(3)∠E1+∠E2+…+∠En=∠B+∠F1+∠F2+…+∠Fn+∠D.理由如下:
由圖1與圖3可得:開(kāi)口朝左的所有角度之和與開(kāi)口朝右的所有角度之和相等,
∴∠E1+∠E2+…+∠En=∠B+∠F1+∠F2+…+∠Fn+∠D.
點(diǎn)評(píng):此題考查了平行線的性質(zhì).此題難度較大,屬于規(guī)律性題目,注意掌握輔助線的作法,注意發(fā)現(xiàn)規(guī)律:開(kāi)口朝左的所有角度之和與開(kāi)口朝右的所有角度之和相等是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、探究:
(1)如圖a,若AB∥CD,則∠B+∠D=∠E,你能說(shuō)明為什么嗎?
(2)反之,若∠B+∠D=∠E,直線AB與CD有什么位置關(guān)系?請(qǐng)證明;
(3)若將點(diǎn)E移至圖b所示位置,此時(shí)∠B、∠D、∠E之間有什么關(guān)系?請(qǐng)證明;
(4)若將E點(diǎn)移至圖c所示位置,情況又如何?
(5)在圖d中,AB∥CD,∠E+∠G與∠B+∠F+∠D又有何關(guān)系?
(6)在圖e中,若AB∥CD,又得到什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

(1)如圖1,若AB∥CD,點(diǎn)P在AB、CD外部,求證:∠BPD=∠B-∠D;
(2)將點(diǎn)P移到AB、CD內(nèi)部,如圖2,(1)中的結(jié)論是否成立?若成立,說(shuō)明理由:若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?不必說(shuō)明理由;
(3)在圖2中,將直線AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖3,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?并證明你的結(jié)論;
(4)在圖4中,若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°,則n=
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖a,若AB∥CD,點(diǎn)P在AB、CD外部.試說(shuō)明∠BPD=∠B-∠D;
(2)將點(diǎn)P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說(shuō)明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明你的結(jié)論成立的理由;
(3)在圖b中,將直線AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小學(xué)四年級(jí)我們已經(jīng)知道三角形三個(gè)內(nèi)角和是180°,對(duì)于如圖1中,AC,BD交于O點(diǎn),形成的兩個(gè)三角形中的角存在以下關(guān)系:①∠DOC=∠AOB   ②∠D+∠C=∠A+∠B.試探究下面問(wèn)題:
已知∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,
(1)如圖2,若AB∥CD,∠D=30°,∠B=40°,則∠E=
35°
35°

(2)如圖3,若AB不平行CD,∠D=30°,∠B=50°,則∠E=
40°
40°

(3)在總結(jié)前兩問(wèn)的基礎(chǔ)上,借助圖3,探究∠E與∠D、∠B之間是否存在某種等量關(guān)系?若存在,請(qǐng)說(shuō)明理由;若不存在,請(qǐng)舉例說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案