【題目】如圖,在△ACD和△BCE中, AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD與BE相交于點(diǎn)P,則∠BPD的度數(shù)為( )
A.110°B.125°C.130°D.155°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖,下列結(jié)論:①;②;③;④;⑤,正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=mx+2m+3的圖像與y=-x的圖像交于點(diǎn)C,且點(diǎn)C的橫坐標(biāo)為-3,與x軸、y軸分別交于點(diǎn)A、點(diǎn)B.
(1)求m的值與AB的長(zhǎng);
(2)若點(diǎn)D(9,0),連結(jié)BD,求證△ABD為直角三角形.
(3)在y軸上是否存在點(diǎn)P,使得△ABP為等腰三角形,若存在請(qǐng)求出P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,無(wú)論k取何實(shí)數(shù),直線y=(k-1)x+4-5k總經(jīng)過(guò)定點(diǎn)P,則點(diǎn)P與動(dòng)點(diǎn)Q(5m-1,5m+1)的距離的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)設(shè)△PEQ的面積為S,求S與t時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、E、H為頂點(diǎn)的四邊形是菱形,直接寫(xiě)出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別交于、兩點(diǎn),拋物線經(jīng)過(guò)、兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,連接.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)點(diǎn) 在拋物線上,連接 ,當(dāng) 時(shí),求點(diǎn)的坐標(biāo);
(3)點(diǎn)從點(diǎn)出發(fā),沿線段由向運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿線段由向運(yùn)動(dòng), 、的運(yùn)動(dòng)速度都是每秒個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),、同時(shí)停止運(yùn)動(dòng),試問(wèn)在坐標(biāo)平面內(nèi)是否存在點(diǎn),使、運(yùn)動(dòng)過(guò)程中的某一時(shí)刻,以、、、為頂點(diǎn)的四邊形為菱形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,已知AB=AC,D是AC上的一點(diǎn),CD=9,BC=15,BD=12.
(1)證明:△BCD是直角三角形.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AC為⊙O的直徑,PB是⊙O的切線,B為切點(diǎn),OP⊥BC,垂足為E,交⊙O于D,連接BD.
(1)求證:BD平分∠PBC;
(2)若PD =3DE,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問(wèn)題解決:
如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問(wèn)題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com