(2012•黔南州)如圖1,在邊長(zhǎng)為5的正方形ABCD中,點(diǎn)E、F分別是BC、DC邊上的點(diǎn),且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延長(zhǎng)EF交正方形外角平分線(xiàn)CP于點(diǎn)P(如圖2),試判斷AE與EP的大小關(guān)系,并說(shuō)明理由;
(3)在圖2的AB邊上是否存在一點(diǎn)M,使得四邊形DMEP是平行四邊形?若存在,請(qǐng)給予證明;若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(1)由同角的余角相等得到∠1=∠2,故有Rt△ABE∽R(shí)t△ECF?AB:CE=BE:CF?EC:CF=AB:BE=5:2;
(2)在AB上取BH=BE,連接EH,根據(jù)已知及正方形的性質(zhì)利用ASA判定△AHE≌△ECP,從而得到AE=EP;
(3)先證△DAM≌△ABE,繼而可得四邊形DMEP是平行四邊形.
解答:解:(1)如圖1.∵AE⊥EF,
∴∠2+∠3=90°,
∵四邊形ABCD為正方形,
∴∠B=∠C=90°,
∵∠1+∠3=90°,
∴∠1=∠2,
∴△ABE∽△ECF,
∴AB:CE=BE:CF,
∴EC:CF=AB:BE=5:2

(2)如圖2,在AB上取BG=BE,連接EG,
∵ABCD為正方形,
∴AB=BC,
∵BE=BG,
∴AG=EC,
在△AGE和△ECP中
,
∴△AGE≌△ECP(ASA),
∴AE=EP;

(3)存在.順次連接DMEP.
如圖3.
在AB取點(diǎn)M,使AM=BE,
∵AE⊥EF,
∴∠2+∠3=90°,
∵四邊形ABCD為正方形,∴∠B=∠BCD=90°,
∴∠1+∠3=90°,
∴∠1=∠2,
∵∠DAM=∠ABE=90°,DA=AB,

∴△DAM≌△ABE(SAS),
∴DM=AE,
∵AE=EP,
∴DM=PE,
∵∠1=∠5,∠1+∠4=90°,
∴∠4+∠5=90°,
∴DM⊥AE,
∴DM∥PE
∴四邊形DMEP是平行四邊形.
點(diǎn)評(píng):本題中,要熟練掌握正方形的性質(zhì)及三角形相似的判定和性質(zhì)的綜合運(yùn)用.
(1)中求線(xiàn)段的比,一般會(huì)與相似三角形掛勾;
(2)中增加了角平分線(xiàn)的相關(guān)性質(zhì),通過(guò)目測(cè)可猜想兩條線(xiàn)段相等,從而通過(guò)構(gòu)造全等三角形的判定求解或是利用角平分線(xiàn)的性質(zhì)定理求解;
(3)中則考查了平行四邊形的識(shí)別.
命題規(guī)律與趨勢(shì):本題起點(diǎn)不難,采用低起點(diǎn)、寬入口、坡度緩、步步高、窄出口”的分層考查的特點(diǎn),考查學(xué)生的綜合運(yùn)用知識(shí)解決總理的能力.以正方形為依托,以點(diǎn)的變化形式綜合考查了三角形相似、三角形全等、角平分線(xiàn)性質(zhì)、平行四邊形的識(shí)別等知識(shí).圖中正確解讀信息、找到正確的思路是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔南州)如圖,將正方體的平面展開(kāi)圖重新折成正方體后,“!弊謱(duì)面的字是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔南州)為做好“四幫四促”工作,黔南州某局機(jī)關(guān)積極倡導(dǎo)“掛幫一日捐”活動(dòng).切實(shí)幫助貧困村民,在一日捐活動(dòng)中,全局50名職工積極響應(yīng),同時(shí)將所捐款情況統(tǒng)計(jì)并制成統(tǒng)計(jì)圖,根據(jù)圖提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔南州)已知,扇形AOB中,若∠AOB=45°,AD=4cm,
CD
=3πcm,則圖中陰影部分的面積是
14πcm2
14πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔南州)“新華網(wǎng)北京5月9日電,近一個(gè)月以來(lái),菲律賓在我國(guó)中沙黃巖島海域不斷制造事端,襲擾中國(guó)漁船,提出國(guó)際仲裁,給黃巖島改名,欲去除島上與中國(guó)有關(guān)的標(biāo)志…”,南海局勢(shì)緊張,某校針對(duì)“黃巖島事件”在本校學(xué)生中做了一次抽樣調(diào)查,并把調(diào)查結(jié)果分為三種類(lèi)型:
A.不知道“黃巖島事件”;
B.知道“黃巖島事件”,但不太清楚原因;
C.知道“黃巖島事件”,并清楚事發(fā)原因并表示關(guān)注.
圖是根據(jù)調(diào)查結(jié)果繪制的部分統(tǒng)計(jì)圖.
請(qǐng)根據(jù)提供的信息回答問(wèn)題:
(1)已知A類(lèi)學(xué)生占被調(diào)查學(xué)生人數(shù)的30%,則被調(diào)查學(xué)生有多少人?
(2)計(jì)算B類(lèi)學(xué)生的人數(shù)并根據(jù)計(jì)算結(jié)果補(bǔ)全統(tǒng)計(jì)圖;
(3)如果該校共有學(xué)生2000人,試估計(jì)該校有多少學(xué)生知道“黃巖島事件”,并清楚事發(fā)原因并表示關(guān)注.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔南州)已知:如圖,點(diǎn)C在以AB為直徑的⊙O上,點(diǎn)D在AB的延長(zhǎng)線(xiàn)上,∠BCD=∠A.
(1)求證:CD為⊙O的切線(xiàn);
(2)過(guò)點(diǎn)C作CE⊥AB于E.若CE=2,cosD=
45
,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案