【題目】數(shù)學(xué)活動(dòng)探究特殊的平行四邊形.

問題情境

如圖,在四邊形中,為對(duì)角線,.請(qǐng)你添加條件,使它們成為特殊的平行四邊形.

提出問題

第一小組添加的條件是,則四邊形是菱形.請(qǐng)你證明;

第二小組添加的條件是,,則四邊形是正方形.請(qǐng)你證明.

【答案】見解析

【解析】

1)先根據(jù)SSS定理得出ABC≌△ADC,故可得出∠BAC=∠DAC,∠BCA=∠DCA.再由AB∥CD可得出∠BAC=∠DCA,根據(jù)等邊對(duì)等角可得出四邊形的四條邊均相等,進(jìn)而可得出結(jié)論;
(2)根據(jù)ABC≌△ADC得出∠D=∠B,再由∠BCD=90°得出四邊形ABCD是矩形,根據(jù)BC=DC可得出結(jié)論.

證明:在中,

,

,

,

,

,

,

∴四邊形是菱形;解:在中,

,

,

∴四邊形是矩形.

,

∴矩形是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對(duì)角線AC,BD相交于點(diǎn)O,下列結(jié)論中:

①∠ABC=ADC;

AC與BD相互平分;

AC,BD分別平分四邊形ABCD的兩組對(duì)角;

四邊形ABCD的面積S=ACBD.

正確的是 (填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線

當(dāng)拋物線的頂點(diǎn)在軸上時(shí),求該拋物線的解析式;

不論取何值時(shí),拋物線的頂點(diǎn)始終在一條直線上,求該直線的解析式;

若有兩點(diǎn),,且該拋物線與線段始終有交點(diǎn),請(qǐng)直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小聰遇到這樣一個(gè)有關(guān)角平分線的問題:如圖1,在中,,平分,,求的長(zhǎng).

小聰思考:因?yàn)?/span>平分,所以可在邊上取點(diǎn),使,連接.這樣很容易得到,經(jīng)過推理能使問題得到解決(如圖2).

請(qǐng)回答:(1   三角形.

2的長(zhǎng)為   

參考小聰思考問題的方法,解決問題:

3)如圖3,已知中,,平分.求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,B=30°,DBC上一點(diǎn),且∠DAB=45°

(1) 求∠DAC的度數(shù).

(2) 求證:ACD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)期間,某食品店平均每天可賣出300只粽子,賣出1只粽子的利潤(rùn)是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣出100只粽子.為了使每天獲取的利潤(rùn)更多,該店決定把零售單價(jià)下降m(0<m<1)元.

(1)零售單價(jià)下降m元后,該店平均每天可賣出_____只粽子,利潤(rùn)為_____元.

(2)在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使該店每天獲取的利潤(rùn)是420元并且賣出的粽子更多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)研究發(fā)現(xiàn),一般情況下,在一節(jié)分鐘的課中,學(xué)生的注意力隨學(xué)習(xí)時(shí)間的變化而變化.開始學(xué)習(xí)時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)隨時(shí)間(分鐘)的變化規(guī)律如下圖所示(其中、分別為線段,為雙曲線的一部分).

求注意力指標(biāo)數(shù)與時(shí)間(分鐘)之間的函數(shù)關(guān)系式;

開始學(xué)習(xí)后第分鐘時(shí)與第分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

某些數(shù)學(xué)內(nèi)容的課堂學(xué)習(xí)大致可分為三個(gè)環(huán)節(jié):即教師引導(dǎo),回顧舊知;自主探索,合作交流;總結(jié)歸納,鞏固提高.其中教師引導(dǎo),回顧舊知環(huán)節(jié)分鐘;重點(diǎn)環(huán)節(jié)自主探索,合作交流這一過程一般

需要分鐘才能完成,為了確保效果,要求學(xué)習(xí)時(shí)的注意力指標(biāo)數(shù)不低于.請(qǐng)問這樣的課堂學(xué)習(xí)安排是否合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:在邊長(zhǎng)為4的正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O

探究1:如圖1,若點(diǎn)P是對(duì)角線BD上任意一點(diǎn),求線段AP的長(zhǎng)的取值范圍;

探究2:如圖2,若點(diǎn)P是△ABC內(nèi)任意一點(diǎn),點(diǎn)M、N分別是AB邊和對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),則當(dāng)AP的值在探究1中的取值范圍內(nèi)變化時(shí),△PMN的周長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出△PMN周長(zhǎng)的最小值,若不存在,請(qǐng)說明理由;

問題解決:如圖3,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P是△ABC內(nèi)任意一點(diǎn),且AP=4,點(diǎn)M、N分別是AB邊和對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),則當(dāng)△PMN的周長(zhǎng)取到最小值時(shí),直接求四邊形AMPN面積的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案