【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動點(diǎn)C從原點(diǎn)O開始沿OA方向以每秒1個(gè)單位長度移動,動點(diǎn)D從點(diǎn)B開始沿BO方向以每秒1個(gè)單位長度移動,動點(diǎn)C、D同時(shí)出發(fā),當(dāng)動點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動.

(1)直接寫出拋物線的解析式:

(2)求△CED的面積S與D點(diǎn)運(yùn)動時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時(shí),在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】(1);(2),當(dāng)t=5時(shí),S最大=;(3)存在,P(,)或P(8,0)或P(,).

【解析】

試題分析:(1)將點(diǎn)A、B代入拋物線即可求出拋物線的解析式;

(2)根據(jù)題意得:當(dāng)D點(diǎn)運(yùn)動t秒時(shí),BD=t,OC=t,然后由點(diǎn)A(0,8)、B(8,0),可得OA=8,OB=8,從而可得OD=8﹣t,然后令y=0,求出點(diǎn)E的坐標(biāo)為(﹣2,0),進(jìn)而可得OE=2,DE=2+8﹣t=10﹣t,然后利用三角形的面積公式即可求CED的面積S與D點(diǎn)運(yùn)動時(shí)間t的函數(shù)解析式為:,然后轉(zhuǎn)化為頂點(diǎn)式即可求出最值為:S最大=

(3)由(2)知:當(dāng)t=5時(shí),S最大=,進(jìn)而可知:當(dāng)t=5時(shí),OC=5,OD=3,進(jìn)而可得CD=,從而確定C,D的坐標(biāo),即可求出直線CD的解析式,然后過E點(diǎn)作EFCD,交拋物線與點(diǎn)P,然后求出直線EF的解析式,與拋物線聯(lián)立方程組解得即可得到其中的一個(gè)點(diǎn)P的坐標(biāo),然后利用面積法求出點(diǎn)E到CD的距離,過點(diǎn)D作DNCD,垂足為N,且使DN等于點(diǎn)E到CD的距離,然后求出N的坐標(biāo),過點(diǎn)N作NHCD,與拋物線交與點(diǎn)P,然后求出直線NH的解析式,與拋物線聯(lián)立方程組求解即可得到其中的另兩個(gè)點(diǎn)P的坐標(biāo).

試題解析:(1)將點(diǎn)A(0,8)、B(8,0)代入拋物線y=﹣x2+bx+c得:,解得:b=3,c=8,拋物線的解析式為:,故答案為:;

(2)點(diǎn)A(0,8)、B(8,0),OA=8,OB=8,令y=0,得:,解得:,,點(diǎn)E在x軸的負(fù)半軸上,點(diǎn)E(﹣2,0),OE=2,根據(jù)題意得:當(dāng)D點(diǎn)運(yùn)動t秒時(shí),BD=t,OC=t,OD=8﹣t,DE=OE+OD=10﹣t,S=DEOC=(10﹣t)t=,即=,當(dāng)t=5時(shí),S最大=;

(3)由(2)知:當(dāng)t=5時(shí),S最大=,當(dāng)t=5時(shí),OC=5,OD=3,C(0,5),D(3,0),由勾股定理得:CD=,設(shè)直線CD的解析式為:,將C(0,5),D(3,0),代入上式得:k=,b=5,直線CD的解析式為:,過E點(diǎn)作EFCD,交拋物線與點(diǎn)P,如圖1,

設(shè)直線EF的解析式為:,將E(﹣2,0)代入得:b=直線EF的解析式為:,將,與聯(lián)立成方程組得:,解得:,P(,);

過點(diǎn)E作EGCD,垂足為G,當(dāng)t=5時(shí),SECD=CDEG=EG=,過點(diǎn)D作DNCD,垂足為N,且使DN=,過點(diǎn)N作NMx軸,垂足為M,如圖2,

可得EGD∽△DMN,,EGDN=EDDM,即:DM==,OM=,由勾股定理得:MN==,N(),過點(diǎn)N作NHCD,與拋物線交與點(diǎn)P,如圖2,設(shè)直線NH的解析式為:,將N(),代入上式得:b=直線NH的解析式為:,將,與聯(lián)立成方程組得:,解得:,,P(8,0)或P(,),

綜上所述:當(dāng)CED的面積最大時(shí),在拋物線上存在點(diǎn)P(點(diǎn)E除外),使PCD的面積等于CED的最大面積,點(diǎn)P的坐標(biāo)為:P(,)或P(8,0)或P().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4) 中正確的有( )

A. 4個(gè)
B. 3個(gè)
C. 2個(gè)
D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列二元一次方程組的解為 的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是直角三角形,ACB=90°.

(1)尺規(guī)作圖:作C,使它與AB相切于點(diǎn)D,與AC相交于點(diǎn)E,保留作圖痕跡,不寫作法,請標(biāo)明字母;

(2)在你按(1)中要求所作的圖中,若BC=3,A=30°,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣2,0)、B(4,0)、C(0,﹣8).

(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);

(2)直線CD交x軸于點(diǎn)E,過拋物線上在對稱軸的右邊的點(diǎn)P,作y軸的平行線交x軸于點(diǎn)F,交直線CD于M,使PM=EF,請求出點(diǎn)P的坐標(biāo);

(3)將拋物線沿對稱軸平移,要使拋物線與(2)中的線段EM總有交點(diǎn),那么拋物線向上最多平移多少個(gè)單位長度,向下最多平移多少個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖(1),將一副直角三角板的直角頂點(diǎn)C疊放在一起.

①填空:∠ACE∠BCD(選填“<”或“>”或“=”);
②若∠DCE=25°,求∠ACB的度數(shù);
③猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(2)若改變(1)中一個(gè)三角板的位置,如圖(2)所示,則上述第③題的結(jié)論是否仍然成立?(不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,3),點(diǎn)B(0,1),點(diǎn)C(2,2).

(1)在所給的平面直角坐標(biāo)系中畫出△ABC.
(2)直接寫出點(diǎn)A到x軸,y軸的距離分別是多少?
(3)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015-2016賽季中國男子籃球職業(yè)聯(lián)賽(即CBA)激戰(zhàn)正酣,浙江廣廈隊(duì)表現(xiàn)不俗,暫居榜首,馬布里領(lǐng)銜的衛(wèi)冕冠軍北京首鋼隊(duì)?wèi)?zhàn)績不佳,截止1223日,在前21輪比賽中,積35分位列第七位,按比賽規(guī)則,勝一場得2分,負(fù)一場得1分,那么截止1223日北京首鋼隊(duì)共勝了多少場?

查看答案和解析>>

同步練習(xí)冊答案