如圖,△ABC中,∠BAC=90°,正方形的一邊GF在BC上,其余兩個頂點D,E分別在AB,AC上.連接AG,AF分別交DE于M,N兩點.
(1)求證:.
(2)求證:
(3)若AB=AC=2,求MN的長.
    
(1)證明:∵四邊形DGFE是正方形,∴DN∥BF,
∴△ADM∽△ABG, 
,同理可得

(2)證明:
由(1)可知,同理也可以得到,
,.
∵∠B+∠C=90°,∠CEF+∠C=90°.
∴∠B=∠CEF,
又∵∠BGD=∠EFC=Rt∠,
∴△BGD∽△EFC. ∴.
∵DG,GF,EF是同一個正方形的邊長,∴DG="GF=EF." ∴
, ∴MN 2=DM·EN 
(3)MN=
 (1)通過三角形相似,證明線段之比相等;
(2) ∵   ∴ 
∵∠B=∠C=45o , 四邊形DEFG是正方形,

∵ 由(1)(2)可得 
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,∠C=90°,AC=3cm,BC=4cm,動點P從點B出發(fā)以2cm/s的速度向點C移動,動點Q從C出發(fā)以1cm/s的速度向點A移動,如果動點P、Q同時出發(fā),要使△CPQ與△CBA相似,所需要的時間是多少秒?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將△ABC的三邊分別擴大一倍得到△(頂點均在格點上),若它們是以P點為位似中心的位似圖形,則P點的坐標是(    ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側(cè),且
AB=DE,∠A=∠D,AF=DC.
(1)求證:四邊形BCEF是平行四邊形,
(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角坐標系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E,那么點D的坐標為
A.(,B.(,C.(,D.(

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知兩個相似三角形的面積之比為1︰2,那么這兩個相似三角形的相似比為   ▲   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,銳角三角形ABC的邊AB,AC上的高線CE和BF相交于點D,請寫出圖中的兩對相似三角形:    ▲   (用相似符號連接).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC.只用直尺(沒有刻度的尺)和圓規(guī),求作一個△DEF,使得△DEF∽△ABC,且EF=BC.(要求保留作圖痕跡,不必寫出作法)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列各組中的四條線段成比例的是(   )
A.a(chǎn)=3cm, b=4cm, c="5cm" ,d=6cmB.a(chǎn)=3cm, b=2cm, c=6cm, d=4cm
C.a(chǎn)="1cm" ,b="2cm" ,c="3cm" ,d=4cmD.a(chǎn)=3cm, b=2cm, c="5cm" ,d=4cm

查看答案和解析>>

同步練習冊答案