【題目】已知:Rt△EFP和矩形ABCD如圖①擺放(點(diǎn)P與點(diǎn)B重合),點(diǎn)F,B(P),C在同一直線上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如圖②,△EFP從圖①的位置出發(fā),沿BC方向勻速運(yùn)動(dòng),速度為1cm/s,EP與AB交于點(diǎn)G,與BD交于點(diǎn)K;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s.過(guò)點(diǎn)Q作QM⊥BD,垂足為H,交AD于點(diǎn)M,連接AF,PQ,當(dāng)點(diǎn)Q停止運(yùn)動(dòng)時(shí),△EFP也停止運(yùn)動(dòng)設(shè)運(yùn)動(dòng)事件為(s)(0<t<6),解答下列問(wèn)題:
(1)當(dāng)為何值時(shí),PQ∥BD?
(2)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使S五邊形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(3)在運(yùn)動(dòng)過(guò)程中,當(dāng)t為 秒時(shí),PQ⊥PE.
【答案】(1)(2)t=2s時(shí),S五邊形AFPQM:S矩形ABCD=9:8(3)
【解析】
(1)利用平行線分線段成比例定理構(gòu)建方程即可解決問(wèn)題.
(2)假設(shè)存在,由S五邊形AFPQM:S矩形ABCD=9:8構(gòu)建方程即可解決問(wèn)題.
(3)利用相似三角形的性質(zhì)構(gòu)建方程即可解決問(wèn)題.
解:(1)∵PQ∥BD,
∴,
∴,
解得t=,
∴當(dāng)t=時(shí),PQ∥BD.
(2)假設(shè)存在.
∵S五邊形AFPQM=S△ABF+S矩形ABCD﹣S△PQC﹣S△MQD
=×(8﹣t)×6+6×8﹣(8﹣t)×t﹣×(6﹣t)×(6﹣t)
=.
又∵S五邊形AFPQM:S矩形ABCD=9:8,
∴:48=9:8,
整理得:t2﹣20t+36=0,
解得t=2或18(舍棄),
∴t=2s時(shí),S五邊形AFPQM:S矩形ABCD=9:8.
(3)∵PQ⊥PE,
∴∠QPE=90°,
∵∠EFP=∠C=90°,
∴∠EPF+∠QPC=90°,∠QPC+∠PQC=90°,
∴∠EPF=∠PQC,
∴△EPF∽△PQC,
∴,
∴,
解得t=,
∴當(dāng)t=時(shí),PQ⊥PE.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,BC=8,點(diǎn)F是AB邊上一點(diǎn)(不與點(diǎn)B重合)△BCF的外接圓交對(duì)角線BD于點(diǎn)E,連結(jié)CF交BD于點(diǎn)G.
(1)求證:∠ECG=∠BDC.
(2)當(dāng)AB=6時(shí),在點(diǎn)F的整個(gè)運(yùn)動(dòng)過(guò)程中.
①若BF=2時(shí),求CE的長(zhǎng).
②當(dāng)△CEG為等腰三角形時(shí),求所有滿足條件的BE的長(zhǎng).
(3)過(guò)點(diǎn)E作△BCF外接圓的切線交AD于點(diǎn)P.若PE∥CF且CF=6PE,記△DEP的面積為S1,△CDE的面積為S2,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),則花園面積S的最大值為_____m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以D為頂點(diǎn)的拋物線y=﹣x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線BC的表達(dá)式為y=﹣x+3.
(1)求拋物線的表達(dá)式;
(2)在直線BC上有一點(diǎn)P,使PO+PA的值最小,求點(diǎn)P的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量山頂鐵塔AE的高,小明在27m高的樓CD底部D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),OQ⊥BC于點(diǎn)Q,過(guò)點(diǎn)B作半圓O的切線,交OQ的延長(zhǎng)線于點(diǎn)P,PA交半圓O于R,則下列等式中正確的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱,每村參加清理人數(shù)及總開(kāi)支如下表:
村莊 | 清理養(yǎng)魚(yú)網(wǎng)箱人數(shù)/人 | 清理捕魚(yú)網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開(kāi)支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱,要使總支出不超過(guò)102000元,且清理養(yǎng)魚(yú)網(wǎng)箱人數(shù)小于清理捕魚(yú)網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關(guān)于x的方程ax2+bx+k=0有實(shí)數(shù)解,則k>c﹣n;④當(dāng)n=﹣時(shí),△ABP為等腰直角三角形.其中正確結(jié)論是______(填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),∠EAD=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AFB,連接EF.
(1)求證:EF=ED;
(2)若AB=2,CD=1,求FE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com