【題目】為了了解某學(xué)校初四年紀(jì)學(xué)生每周平均課外閱讀時間的情況,隨機(jī)抽查了該學(xué)校初四年級m名同學(xué),對其每周平均課外閱讀時間進(jìn)行統(tǒng)計(jì),繪制了如下條形統(tǒng)計(jì)圖(圖一)和扇形統(tǒng)計(jì)圖(圖二):
(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計(jì)圖中閱讀時間為5小時的扇形圓心角的度數(shù).
③補(bǔ)全條形統(tǒng)計(jì)圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).
【答案】
(1)
解:①∵課外閱讀時間為2小時的所在扇形的圓心角的度數(shù)為90°,
∴其所占的百分比為 = ,
∵課外閱讀時間為2小時的有15人,
∴m=15÷ =60;
②第三小組的頻數(shù)為:60﹣10﹣15﹣10﹣5=20,
補(bǔ)全條形統(tǒng)計(jì)圖為:
(2)
解:∵課外閱讀時間為3小時的20人,最多,
∴眾數(shù)為 3小時;
∵共60人,中位數(shù)應(yīng)該是第30和第31人的平均數(shù),且第30和第31人閱讀時間均為3小時,
∴中位數(shù)為3小時;
平均數(shù)為: ≈2.92小時
【解析】(1)①根據(jù)2小時所占扇形的圓心角的度數(shù)確定其所占的百分比,然后根據(jù)條形統(tǒng)計(jì)圖中2小時的人數(shù)求得m的值;
②求得總?cè)藬?shù)后減去其他小組的人數(shù)即可求得第三小組的人數(shù);(2)利用眾數(shù)、中位數(shù)的定義及平均數(shù)的計(jì)算公式確定即可.本題考查了眾數(shù)、中位數(shù)、平均數(shù)及扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的知識,解題的關(guān)鍵是能夠結(jié)合兩個統(tǒng)計(jì)圖并找到進(jìn)一步解題的有關(guān)信息,難度不大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0)、B(﹣1,0)兩點(diǎn),過點(diǎn)A的直線y=﹣x+4交拋物線于點(diǎn)C.
(1)求此拋物線的解析式;
(2)在直線AC上有一動點(diǎn)E,當(dāng)點(diǎn)E在某個位置時,使△BDE的周長最小,求此時E點(diǎn)坐標(biāo);
(3)當(dāng)動點(diǎn)E在直線AC與拋物線圍成的封閉線A→C→B→D→A上運(yùn)動時,是否存在使△BDE為直角三角形的情況,若存在,請直接寫出符合要求的E點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市初三學(xué)生的體育測試成績和課外體育鍛煉時間的情況,現(xiàn)從全市初三學(xué)生體育測試成績中隨機(jī)抽取200名學(xué)生的體育測試成績作為樣本.體育成績分為四個等次:優(yōu)秀、良好、及格、不及格.
體育鍛煉時間 | 人數(shù) |
4≤x≤6 | |
2≤x<4 | 43 |
0≤x<2 | 15 |
(1)試求樣本扇形圖中體育成績“良好”所對扇形圓心角的度數(shù);
(2)統(tǒng)計(jì)樣本中體育成績“優(yōu)秀”和“良好”學(xué)生課外體育鍛煉時間表(如圖表所示),請將圖表填寫完整(記學(xué)生課外體育鍛煉時間為x小時);
(3)全市初三學(xué)生中有14400人的體育測試成績?yōu)椤皟?yōu)秀”和“良好”,請估計(jì)這些學(xué)生中課外體育鍛煉時間不少于4小時的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為海里/小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=100°,∠BOC=, D是△ABC外一點(diǎn),且△ADC ≌△BOC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)=150°時,請計(jì)算△AOD三內(nèi)角的度數(shù),并判斷△AOD的形狀;
(3)探究:當(dāng)為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1和l2分別是走私船和我公安快艇航行路程與時間的函數(shù)圖象,請結(jié)合圖象解決下列問題:
(1)在剛出發(fā)時,我公安快艇距走私船多少海里?
(2)計(jì)算走私船與公安艇的速度分別是多少?
(3)求出l1,l2的解析式.
(4)問6分鐘時,走私船與我公安快艇相距多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程
已知a、b、c為△ABC為三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列問題:
(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的序號________.
(2)錯誤原因?yàn)?/span>________.
(3)本題正確結(jié)論是什么,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(2,1),B(-1,3),C(-3,2)
(1)作出△ABC關(guān)于x軸對稱的△;
(2)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;
(3)點(diǎn)P(a,a-2)與點(diǎn)Q關(guān)y軸對稱,若PQ=8,則點(diǎn)P的坐標(biāo)為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個動點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com