如圖,已知CD⊥AB,DE∥BC,∠1=∠2
求證:FG⊥AB.

證明:∵DE∥BC,
∴∠1=∠BCD,
又∠1=∠2
∴∠2=∠BCD
∴FG∥CD
又∵CD⊥AB
∴FG⊥AB.
分析:根據(jù)DE∥BC,∴∠1=∠BCD,又∠1=∠2,∴∠2=∠BCD,∴FG∥CD,再由CD⊥AB即可證明.
點(diǎn)評(píng):本題考查了平行線的判定與性質(zhì),屬于基礎(chǔ)題,關(guān)鍵是正確利用平行線的性質(zhì)與判定定理證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,已知CD∥AB,OE平分∠BOD,∠D=52°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD相交于點(diǎn)O,且AO平分∠BAC,那么圖中全等三角形共有(  )對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知CD⊥AB,EF⊥AB,CD=EF,AF=BD,求證:OA=OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,已知CD⊥AB,垂足為點(diǎn)D,BE⊥AC,垂足為點(diǎn)E,CD、BE相交于點(diǎn)O,則圖中與△BOD相似的三角形有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案