如圖,有一座大橋是靠拋物線型的拱形支撐的,它的橋面處于拱形中部(如我市的中山大橋就是這種模型).已知橋面在拱形之間的寬度CD為40m,橋面CD離拱形支撐的最高點O的距離為10m,且在正常水位時水面寬度AB為48m.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物質的貨車正以40km/h的速度必需經過此橋勻速開往乙地.當貨車行駛到甲地時接到緊急通知:前方連降暴雨,造成水位以每小時0.3m的速度持續(xù)上漲(接到通知時水位已經比正常水位高出2m了,當水位到達橋面CD的高度時,禁止車輛通行).已知甲地距離此橋360km(橋長忽略不計),請問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度不得低于多少km/h?

解:(1)設所求拋物線的解析式為y=ax2,由已知點D的坐標為(20,-10)
∴400a﹦-10,
解得,
∴所求拋物線的解析式為;

(2)設B點坐標為(24,b),則有﹦14.4,
∴貨車在甲地時,水面和橋面的距離為14.4-10-2﹦2.4(m),
∴水位繼續(xù)上漲至橋面需要(h),
∵40×8=320<360,
∴貨車按原來速度行駛,不能安全通過此橋
又∵﹦45,
∴要使貨車安全通過此橋,速度不得低于45km/h.
分析:(1)結合題意和圖所示的直角坐標系,我們可以得到C(-20,-10),D(20,-10),即可求出拋物線的解析式;
(2)根據(jù)題意推出A,B兩點的橫坐標,代入解析式,即可得出他們的縱坐標,它們縱坐標的絕對值為水面到O點的距離為14.4,結合D點的縱坐標推出水面到橋面的距離,根據(jù)水漲的速度求出水漲到橋面的時間,然后根據(jù)時間和車到橋的距離即可求出車安全過橋的最低速度.
點評:本題考查點的坐標的求法及二次函數(shù)的實際應用.借助二次函數(shù)解決實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,有一座大橋是靠拋物線型的拱形支撐的,它的橋面處于拱形中部(如我市的中山大橋就是這種模型).已知橋面在拱形之間的寬度CD為40m,橋面CD離拱形支撐的最高點O的距離為10m,且在正常水位時水面寬度AB為48m.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物質的貨車正以40km/h的速度必需經過此橋勻速開往乙地.當貨車行駛到甲地時接到緊急通知:前方連降暴雨,造成水位以每小時0.3m的速度持續(xù)上漲(接到通知時水位已經比正常水位高出2m了,當水位到達橋面CD的高度時,禁止車輛通行).已知甲地距離此橋360km(橋長忽略不計),請問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度不得低于多少km/h?
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市建蘭中學中考數(shù)學模擬試卷(6月份)(解析版) 題型:解答題

如圖,有一座大橋是靠拋物線型的拱形支撐的,它的橋面處于拱形中部(如我市的中山大橋就是這種模型).已知橋面在拱形之間的寬度CD為40m,橋面CD離拱形支撐的最高點O的距離為10m,且在正常水位時水面寬度AB為48m.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物質的貨車正以40km/h的速度必需經過此橋勻速開往乙地.當貨車行駛到甲地時接到緊急通知:前方連降暴雨,造成水位以每小時0.3m的速度持續(xù)上漲(接到通知時水位已經比正常水位高出2m了,當水位到達橋面CD的高度時,禁止車輛通行).已知甲地距離此橋360km(橋長忽略不計),請問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度不得低于多少km/h?

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省嘉興市初中學業(yè)考試數(shù)學調研測試卷(解析版) 題型:解答題

如圖,有一座大橋是靠拋物線型的拱形支撐的,它的橋面處于拱形中部(如我市的中山大橋就是這種模型).已知橋面在拱形之間的寬度CD為40m,橋面CD離拱形支撐的最高點O的距離為10m,且在正常水位時水面寬度AB為48m.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物質的貨車正以40km/h的速度必需經過此橋勻速開往乙地.當貨車行駛到甲地時接到緊急通知:前方連降暴雨,造成水位以每小時0.3m的速度持續(xù)上漲(接到通知時水位已經比正常水位高出2m了,當水位到達橋面CD的高度時,禁止車輛通行).已知甲地距離此橋360km(橋長忽略不計),請問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度不得低于多少km/h?

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省金華市東陽市中考數(shù)學調研試卷(解析版) 題型:解答題

如圖,有一座大橋是靠拋物線型的拱形支撐的,它的橋面處于拱形中部(如我市的中山大橋就是這種模型).已知橋面在拱形之間的寬度CD為40m,橋面CD離拱形支撐的最高點O的距離為10m,且在正常水位時水面寬度AB為48m.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物質的貨車正以40km/h的速度必需經過此橋勻速開往乙地.當貨車行駛到甲地時接到緊急通知:前方連降暴雨,造成水位以每小時0.3m的速度持續(xù)上漲(接到通知時水位已經比正常水位高出2m了,當水位到達橋面CD的高度時,禁止車輛通行).已知甲地距離此橋360km(橋長忽略不計),請問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度不得低于多少km/h?

查看答案和解析>>

同步練習冊答案