【題目】某校在學(xué)習(xí)貫徹十九大精神“我學(xué)習(xí),我踐行”的活動(dòng)中,計(jì)劃組織全校1300名師生到林業(yè)部門規(guī)劃的林區(qū)植樹(shù),經(jīng)研究,決定租用當(dāng)?shù)爻鲎廛嚬咎峁┑?/span>兩種型號(hào)的客車共50輛作為交通工具,下表是租車公司提供給學(xué)校有關(guān)兩種型號(hào)客車的載客量與租車信息:
型號(hào) | 載客量 | 租金單價(jià) |
30人/輛 | 300元/輛 | |
20人/輛 | 240元/輛 |
注:載客量指的是每輛車客車最多可載該校師生的人數(shù)
(1)設(shè)租用型號(hào)客車輛,租車總費(fèi)用元,求與的函數(shù)解析式,并直接寫出的取值范圍;
(2)若要使租車總費(fèi)用不超過(guò)13980元,一共有幾種租車方案?哪種租車方案最省錢?
【答案】(1), 且為整數(shù).(2)一共有4種租車方案,當(dāng)租用型號(hào)30輛,型號(hào)20輛時(shí)最省錢.
【解析】
(1)根據(jù)租車總費(fèi)用=每輛A型號(hào)客車的租金單價(jià)×租車輛數(shù)+每輛B型號(hào)客車的租金單價(jià)×租車輛數(shù),即可得出y與x之間的函數(shù)解析式,再由全校共1300名師生需要坐車可求出x的取值范圍;
(2)由租車總費(fèi)用不超過(guò)13980元,即可得出關(guān)于x的一元一次不等式,解之即可得出x的取值范圍,取其中的整數(shù)即可找出各租車方程,再利用一次函數(shù)的性質(zhì)即可找出最省錢的租車方案.
(1)根據(jù)題意得:y=300x+240(50-x)=60x+12000,
∵30x+20(50-x)≥1300,
∴x≥30,
∴y與x的函數(shù)解析式為y=60x+12000(x≥30);
(2)根據(jù)題意得:60x+12000≤13980,
解得:x≤33,
∴共有4種租車方案,方案1:租A型號(hào)客車30輛,B型號(hào)客車20輛;方案2:租A型號(hào)客車31輛,B型號(hào)客車19輛;方案3:租A型號(hào)客車32輛,B型號(hào)客車18輛;方案4:租A型號(hào)客車33輛,B型號(hào)客車17輛,
∵60>0,
∴y值隨x的增大而增大,
∴當(dāng)x=30時(shí),y取得最小值,
∴租車方案1,即租A型號(hào)客車30輛,B型號(hào)客車20輛時(shí)最省錢.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA⊥AB,垂足為 A,AB=24,AC=12,射線 BM⊥AB,垂足為 B, 一動(dòng)點(diǎn) E 從 A點(diǎn)出發(fā)以 3 厘米/秒沿射線 AN 運(yùn)動(dòng),點(diǎn) D 為射線 BM 上一動(dòng)點(diǎn), 隨著 E 點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持 ED=CB,當(dāng)點(diǎn) E 經(jīng)過(guò)______秒時(shí),△DEB 與△BCA 全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=a,AD:DE=4:1,寫出求DE長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,OP是∠MON的平分線,請(qǐng)你利用該圖形畫一對(duì)以OP所在直線為對(duì)稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.
請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問(wèn)題:
(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC和∠BCA的平分線,AD、CE相交于點(diǎn)F,求∠EFA的度數(shù);
(2)在(1)的條件下,請(qǐng)判斷FE與FD之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問(wèn)在(2)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,的頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(1)請(qǐng)你在所給的平面直角坐標(biāo)系中,畫出關(guān)于軸對(duì)稱的;
(2)將(1)中得到的向下移動(dòng)4個(gè)單位得到,畫出;
(3)在中有一點(diǎn),直接寫出經(jīng)過(guò)以上兩次圖形變換后中對(duì)應(yīng)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過(guò)點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過(guò)點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO的邊AB垂直于x軸、垂足為點(diǎn)B,反比例函數(shù)y= (x<0)的圖象經(jīng)過(guò)AO的中點(diǎn)C、且與AB相交于點(diǎn)D,OB=8、AD=6.
(1)求反比例函數(shù)y= 的解析.
(2)求經(jīng)過(guò)C,D兩點(diǎn)的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅紅和娜娜按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列命題中錯(cuò)誤的是( )
A.紅紅不是勝就是輸,所以紅紅勝的概率為
B.紅紅勝或娜娜勝的概率相等
C.兩人出相同手勢(shì)的概率為
D.娜娜勝的概率和兩人出相同手勢(shì)的概率一樣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com