精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=AC,D、E分別在AC、AB邊上,且BC=BD,AD=DE=EB,求∠A的度數.

【答案】解:∵DE=EB ∴設∠BDE=∠ABD=x,
∴∠AED=∠BDE+∠ABD=2x,
∵AD=DE,
∴∠AED=∠A=2x,
∴∠BDC=∠A+∠ABD=3x,
∵BD=BC,
∴∠C=∠BDC=3x,
∵AB=AC,
∴∠ABC=∠C=3x,
在△ABC中,3x+3x+2x=180°,
解得x=22.5°,
∴∠A=2x=22.5°×2=45°.
【解析】根據同一個三角形中等邊對等角的性質,設∠ABD=x,結合三角形外角的性質,則可用x的代數式表示∠A、∠ABC、∠C,再在△ABC中,運用三角形的內角和為180°,可求∠A的度數.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知射線CD∥OA,點E、點F是OA上的動點,CE平分∠OCF,且滿足∠FCA=∠FAC.

(1)若∠O=∠ADC,判斷AD與OB的位置關系,證明你的結論.
(2)若∠O=∠ADC=60°,求∠ACE的度數.
(3)在(2)的條件下左右平行移動AD,∠OEC和∠CAD存在怎樣的數量關系?請直接寫出結果(不需寫證明過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知方程mx﹣2=3x的解為x=﹣1,則m=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是“經過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:

已知:直線l和l外一點P.(如圖1)

求作:直線l的垂線,使它經過點P.

作法:如圖2

(1)在直線l上任取兩點A,B;

(2)分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;

(3)作直線PQ.

所以直線PQ就是所求的垂線.

請回答:該作圖的依據是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若點A(a+1,b﹣1)在第二象限,則點B(﹣1,b)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數;
(2)若∠AOE=α,求∠BOD的度數;(用含α的代數式表示)
(3)從(1)(2)的結果中能看出∠AOE和∠BOD有何關系?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A,B兩地有公路和鐵路相連,在這條路上有一家食品廠,它到B地的距離是到A地的2倍,這家工廠從A地購買原料,制成食品賣到B地.已知公路運價為1.5元/(公里噸),鐵路運價為1元/(公里噸),這兩次運輸(第一次:A地→食品廠,第二次:食品廠→B地)共支出公路運費15600元,鐵路運費20600元.

問:
(1)這家食品廠到A地的距離是多少?
(2)這家食品廠此次共買進原料和賣出食品各多少噸?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在給定的一張平行四邊形紙片上作一個菱形,甲、乙兩人的作法如下: 甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠BAD,∠ABC的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據兩人的作法請分別做出判斷,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題中是真命題的有(

①直徑是圓中最大的弦;②長度相等的弧是等弧;③平分弦的直徑垂直于弦,并且平分弦所對的兩條。虎軆蓚圓心角相等,它們所對的弦也相等;⑤等弧所對的圓心角相等.

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案