(考點(diǎn))|-2|等于

[  ]

A.-2

B.2

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:中學(xué)教材全解 七年級(jí)數(shù)學(xué)上。ū睅煷蟀妫 北師大版 題型:022

(考點(diǎn)題)等于________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【考點(diǎn)】切線的性質(zhì);圓周角定理.

【專題】計(jì)算題.

【分析】連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),連接BD,AD,如圖所示,由PA與PB都為圓O的切線,利用切線的性質(zhì)得到OA與AP垂直,OB與BP垂直,在四邊形APOB中,根據(jù)四邊形的內(nèi)角和求出∠AOB的度數(shù),再利用同弧所對(duì)的圓周角等于所對(duì)圓心角的一半求出∠ADB的度數(shù),再根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可求出∠ACB的度數(shù).

【解答】連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),

連接BD,AD,如圖所示:

∵PA、PB是⊙O的切線,

∴OA⊥AP,OB⊥BP,

∴∠OAP=∠OBP=90°,又∠P=40°,

∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,

∵圓周角∠ADB與圓心角∠AOB都對(duì)弧AB,

∴∠ADB=∠AOB=70°,

又∵四邊形ACBD為圓內(nèi)接四邊形,

∴∠ADB+∠ACB=180°,

則∠ACB=110°.

故選B。

【點(diǎn)評(píng)】此題考查了切線的性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【答案】x≥1。

【考點(diǎn)】二次根式有意義的條件.

【專題】存在型.

【分析】先根據(jù)二次根式有意義的條件列出關(guān)于x的不等式,求出x的取值范圍即可.

【解答】∵在實(shí)數(shù)范圍內(nèi)有意義,

x-1≥0,

解得x≥1.

故答案為:x≥1.

【點(diǎn)評(píng)】本題考查的是二次根式有意義的條件,即被開方數(shù)大于等于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【答案】60°。

【考點(diǎn)】平行線的性質(zhì);三角形的外角性質(zhì).

【分析】利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠3的同位角的度數(shù),再根據(jù)兩直線平行,同位角相等即可求解.

【解答】如圖,∵∠1=130°,∠2=70°,

∴∠4=∠1-∠2=130°-70°=60°,

ab

∴∠3=∠4=60°.

故答案為:60°.

【點(diǎn)評(píng)】本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),準(zhǔn)確識(shí)圖,理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

【考點(diǎn)】菱形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的判定與性質(zhì).

【分析】根據(jù)菱形的四條邊都相等,先判定△ABD是等邊三角形,再根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,再求出DF=CE,然后利用“邊角邊”即可證明△BDF≌△DCE,從而判定①正確;根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DBF=∠EDC,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可以求出∠DMF=∠BDC=60°,再根據(jù)平角等于180°即可求出∠BMD=120°,從而判定②正確;根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及平行線的性質(zhì)求出∠ABM=∠ADH,再利用“邊角邊”證明△ABM和△ADH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AH=AM,對(duì)應(yīng)角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,從而判定出△AMH是等邊三角形,判定出③正確;根據(jù)全等三角形的面積相等可得△AMH的面積等于四邊形ABMD的面積,然后判定出④錯(cuò)誤.

【解答】在菱形ABCD中,∵AB=BD,

∴AB=BD=AD,

∴△ABD是等邊三角形,

∴根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,

∵BE=CF,

∴BC-BE=CD-CF,

即CE=DF,

在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,

∴△BDF≌△DCE(SAS),故①小題正確;

∴∠DBF=∠EDC,

∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,

∴∠BMD=180°-∠DMF=180°-60°=120°,故②小題正確;

∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,

∴∠DEB=∠ABM,

又∵AD∥BC,

∴∠ADH=∠DEB,

∴∠ADH=∠ABM,

在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,

∴△ABM≌△ADH(SAS),

∴AH=AM,∠BAM=∠DAH,

∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,

∴△AMH是等邊三角形,故③小題正確;

∵△ABM≌△ADH,

∴△AMH的面積等于四邊形ABMD的面積,

又∵△AMH的面積=AM·AM=AM2

∴S四邊形ABMDAM2,S四邊形ABCD≠S四邊形ABMD,故④小題錯(cuò)誤,

綜上所述,正確的是①②③共3個(gè).

故選C.

【點(diǎn)評(píng)】本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),題目較為復(fù)雜,特別是圖形的識(shí)別有難度,從圖形中準(zhǔn)確確定出全等三角形并找出全等的條件是解題的關(guān)鍵.

查看答案和解析>>

同步練習(xí)冊(cè)答案