【答案】60°。
【考點】平行線的性質(zhì);三角形的外角性質(zhì).
【分析】利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠3的同位角的度數(shù),再根據(jù)兩直線平行,同位角相等即可求解.
【解答】如圖,∵∠1=130°,∠2=70°,
∴∠4=∠1-∠2=130°-70°=60°,
∵a∥b,
∴∠3=∠4=60°.
故答案為:60°.
【點評】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),準(zhǔn)確識圖,理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源:2012屆江蘇省泰州市海陵區(qū)九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題滿分8分)三角形兩邊長分別是8和6,第三邊的長是一元二次方程x2-16x+60=0的一個實數(shù)根,求此三角形的面積.
24(本題滿分10分)如圖,直線和拋物線都經(jīng)過點A(1,0),B(a,2).
【小題1】⑴求直線和拋物線的解析式;
【小題2】⑵當(dāng)x為何值時, (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【解題思路】通過讀題、審題
(1)完成表格有2個思路:從供或需的角度考慮,均能完成上表。
(2)運用公式(調(diào)運水的重量×調(diào)運的距離)
總調(diào)運量=A的總調(diào)運量+B的總調(diào)運量調(diào)運水的重量×調(diào)運的距離
y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275(注:一次函數(shù)的最值要得到自變量的取值范圍)∵5>0∴y隨x的增大而增大,y要最小則x應(yīng)最大
由解得1≤x≤14
y=5x+1275中∵5>0∴y隨x的增大而增大,y要最小則x應(yīng)最小=1
∴調(diào)運方案為A往甲調(diào)1噸,往乙調(diào)13噸;B往甲調(diào)14噸,不往乙調(diào)。
【答案】⑴(從左至右,從上至下)14-x 15-x x-1
⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275
解不等式1≤x≤14
所以x=1時y取得最小值
y=5+1275=1280
∴調(diào)運方案為A往甲調(diào)1噸,往乙調(diào)13噸;B往甲調(diào)14噸,不往乙調(diào)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,∠BAC=90°,AC=2,AB=,△ACD是等邊三角形.
(1)求∠ABC的度數(shù).
(2)以點A為中心,把△ABD順時針旋轉(zhuǎn)60°,
畫出旋轉(zhuǎn)后的圖形.
(3)求BD的長度.
【解析】(1)利用正切的知識可得出答案.
(2)根據(jù)旋轉(zhuǎn)角度、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向找出各點的對稱點,順次連接即可;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ACE≌△ADB,從而確定∠EBC=90°,然后利用勾股定理即可解答
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆浙江省臺州六校九年級上學(xué)期第二次聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題
如圖,△ABC中,∠BAC=90°,AC=2,AB=,△ACD是等邊三角形.
(1)求∠ABC的度數(shù).
(2)以點A為中心,把△ABD順時針旋轉(zhuǎn)60°,
畫出旋轉(zhuǎn)后的圖形.
(3)求BD的長度.
【解析】(1)利用正切的知識可得出答案.
(2)根據(jù)旋轉(zhuǎn)角度、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向找出各點的對稱點,順次連接即可;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ACE≌△ADB,從而確定∠EBC=90°,然后利用勾股定理即可解答
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com