如圖1,以矩形ABCD的頂點(diǎn)A為原點(diǎn),AD所在的直線為x軸,AB所在的直線為y軸,建立平面直角坐標(biāo)系.點(diǎn)D的坐標(biāo)為(8,0),點(diǎn)B的坐標(biāo)為(0,6),點(diǎn)F在對角線AC上運(yùn)動(點(diǎn)F不與點(diǎn)A、C重合),過點(diǎn)F分別作x軸、y軸的垂線,垂足為G、E.設(shè)四邊形BCFE的面積為S1,四邊形CDGF的面積為S2,△AFG的面積為S3
(1)試判斷S1,S2的關(guān)系,并加以證明;
(2)當(dāng)S3:S2=1:3時(shí),求點(diǎn)F的坐標(biāo);
(3)如圖2,在(2)的條件下,把△AEF沿對角線AC所在直線平移,得到△A′E′F′,且A′,F(xiàn)′兩點(diǎn)始終在直線AC上,是否存在這樣的點(diǎn)E′,使點(diǎn)E′到x軸的距離與到y(tǒng)軸的距離比是5:4?若存在,請求出點(diǎn)E′的坐標(biāo);若不存在,請說明理由.
(1)S1=S2
證明:∵FE⊥y軸,F(xiàn)G⊥x軸,∠BAD=90°,
∴四邊形AEFG是矩形.
∴AE=GF,EF=AG.
∴S△AEF=S△AFG
同理S△ABC=S△ACD
∴S△ABC-S△AEF=S△ACD-S△AFG
即S1=S2

(2)∵FGCD,
∴△AFG△ACD.
S3
S3+S2
=(
FG
CD
)2=(
AG
AD
)2=
1
1+3
=
1
4

∴FG=
1
2
CD,AG=
1
2
AD.
∵CD=BA=6,AD=BC=8,
∴FG=3,AG=4.
∴F(4,3);

(3)∵△A′E′F′是由△AEF沿直線AC平移得到的,且A′、F′兩點(diǎn)始終在直線AC上,
∴點(diǎn)E′在過點(diǎn)E(0,3)且與直線AC平行的直線l上移動.
∵直線AC的解析式是y=
3
4
x,
∴直線L的解析式是y=
3
4
x+3.
設(shè)點(diǎn)E′為(x,y),
∵點(diǎn)E′到x軸的距離與到y(tǒng)軸的距離比是5:4,
∴|y|:|x|=5:4.
①當(dāng)x、y為同號時(shí),得
y=
5
4
x
y=
3
4
x+3
解得
x=6
y=7.5
,
∴E′(6,
15
2
);
②當(dāng)x、y為異號時(shí),得
y=-
5
4
x
y=
3
4
x+3
解得
x=-
3
2
y=
15
8
,
∴E′(-
3
2
,
15
8
).
∴存在滿足條件的E′坐標(biāo)分別是(6,
15
2
)、(-
3
2
,
15
8
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,E、F分別是邊AD、BC的中點(diǎn),點(diǎn)G、H在DC邊上,點(diǎn)M、N在AB邊上,且GH=
1
2
DC,MN=
1
3
AB.若AB=10,BC=12,則圖中陰影部分面積和為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

墻上釘著一根彩繩圍成的梯形形狀的飾物,如圖中所示的實(shí)線部分,小英將圖中梯形下底的兩個(gè)釘子拿掉,并將這根彩繩釘成一個(gè)長方形,如圖中所示的虛線部分,求小英所釘成的長方形的長以及長方形的面積分別是多少?(相關(guān)數(shù)據(jù)如圖中所示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=2AD,E是CD上一點(diǎn),且AE=AB,則∠CBE的度數(shù)是( 。
A.30°B.22.5°C.15°D.10°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將矩形ABCD折疊,AE是折痕,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,量得∠BAF=50°,那么∠DEA等于( 。
A.40°B.50°C.60°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,BE=DF,AC和EF互相平分,∠B=90°.
求證:四邊形ABCD為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

長方形ABCD中,AB=8,對角線AC=10,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在菱形ABCD中,∠BAD=60°,把它放在直角坐標(biāo)系中,使AD邊在y軸上,點(diǎn)C的坐標(biāo)為(2
3
,8

(1)畫出符合題目條件的菱形與直角坐標(biāo)系.
(2)寫出A,B兩點(diǎn)的坐標(biāo).
(3)設(shè)菱形ABCD的對角線的交點(diǎn)為P,問:在y軸上是否存在一點(diǎn)F,使得點(diǎn)P與點(diǎn)F關(guān)于菱形ABCD的某條邊所在的直線對稱,如果存在,寫出點(diǎn)F的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過矩形ABCD的四個(gè)頂點(diǎn)作對角線AC、BD的平行線,分別相交于E、F、G、H四點(diǎn),則四邊形EFGH為______.

查看答案和解析>>

同步練習(xí)冊答案